简介:在BCK—代数中引进左映射和在BCI—代数中引进弱左映射,并探讨它们的性质。主要结果是:如果X是BCK—代数,Y是正定关联BCK—代数,则所有X到Y的左映射的集合也构成正定关联BCI—代数;如果X是BCI—代数,Y是弱正定关联BCI—代数,则所有X到Y的弱左映射的集合也构成弱正定关联BCI—代数。这推广了文(1)与(2)的结果。
简介:S^p(1≤p≤∞)空间为导数属于Hardy空间H^p的复平面单位圆盘D上所有解析函数组成的空间.令函数φ和φ是D上的解析函数且φ(D)D,则将算子W(φ,φ):f→φfoφ称为加权复合算子.文章给出了当1≤q≤p≤∞,φ∈S^∞时,加权复合算子W(φ,φ)从空间S^p到S^q上的有界性的充要条件.然后通过推广经典的Fejer-Riesz不等式证明了当1〈p≤∞时,S^p到圆盘代数A上的嵌入映射是紧的.