简介:讨论了在半群代数k[A]中,如何利用Gause-Jordan消元法去构造半群代数的理想的良序基,进而得到理想的良性基-Groebner-基.
简介:在α次积分C半群和双连续n次积分C半群的基础上,探讨了双连续α次积分C半群的扰动性,得到了双连续α次积分C半群的扰动定理,并且在局部Lipschitz连续条件下证明双连续α次积分C半群的扰动理论仍然成立.
简介:带柔性时间窗的开放式车辆路径问题(OpeningVehicleRoutingProblemwithFlexibleTimewin—dows,OVRPFTW)对物流配送中的延迟或者提早具有一定程度的容忍.本文首先建立了OVRPFTW的数学模型,然后分别将Sine映射,Chebyshev映射和Logistic映射引入基本蚁群算法,构建了三种混沌蚁群算法,并将其用于求解OVRPFTW.算倒测试表明:Sine映射和Chebyshev映射能够明显地改进基本蚁群算法的优化性能,基于Sine映射和Chebyshev映射的混沌蚁群算法的求解性能优于基本蚁群算法和基于Logistic映射的混沌蚁群算法.
简介:本文在L^1空间上,研究了种群细胞中一类具总转变规则的Rotenberg模型,讨论了这类模型相应的迁移算子生成正C0半群,并且证明了该正C0半群是不可约的等结果.
简介:对于多属性群决策中专家权重确定的问题,本文提出了基于聚类的专家权重确定方法,将专家权重分为类别间权重和类别内权重,对专家聚类步骤和类别间权重的计算方法进行了改进。通过专家给出的判断矩阵构建相容度矩阵,利用系统聚类原理,对相容度矩阵进行聚类,得到最大相容度谱系图。通过最大相容度间的距离和给定阈值的比较,对专家进行恰当分类,从而避免了根据现有研究步骤只能将专家分为两类的不足。此外,在确定类别间权重时,除继续对类容量较大的类赋予较大的类别间权重系数外,还引入专家判断矩阵的属性权重一致性来反映类别间的差异,从而有效避免了当某几类专家中含有相等数目专家时,赋予这几类专家相同类别间权重系数的问题。所提方法结构清晰、计算简便,并使得专家权重计算结果更为合理准确。最后运用一个算例对比验证了该方法的可行性和有效性。