简介:为了降低全球卫星导航系统(GNSS)接收机做比特同步的平均估计时间,提出一种自适应比特同步的新颖算法。分析了传统的最大似然比特同步算法,找到了信号强度、比特能量最大值和非相干累加次数三者之间的关系。在此基础上,利用比特能量最大值来设置门限约束非相干累加次数,使得比特同步算法可以针对不同信号强度来自适应地调整非相干累加次数。仿真分析表明,当预设的门限值为1.5?108时,与传统的固定非相干累加比特同步算法相比,所提出的自适应算法的正确同步概率性能只略微下降了5%,但平均估计时间缩短了85%,使得接收机的首次定位时间大幅度减少。
简介:双通道旋转变压器在定点汇编层实现轴角解调时,传统方法运算量大、占用存储空间多。文中根据粗(精)测角所对应的正余弦值大小及其符号,依据反正切函数的性质将求角的定义域从[-∞,+∞]转化到[0,1],设计了在[0,1]区间上基于切比雪夫多项式快速逼近arctan(x)的低阶分段多项式,用来解决其解调问题;提出了一种通过粗测角,在其附近寻找最佳粗精组合角值的轴角组合及纠错方法;最后在桌型号导引头系统的内场试验中进行了测试。试验结果表明,应用本文方法比调用反正切函数法的计算时间减少了50%,比应用查表法的计算精度提高了100倍;该方法具有较好的解码速度和精度,能够用于某些既需要综合考虑功能、体积、重量等要求,又需要快速在定点汇编层实现反正切求角解调的导航系统。
简介:针对在4级海况下船体大幅度晃动,甚至丢失GPS信号的复杂环境,常规算法会导致姿态测量精度急剧下降的情形,为‘动中通’中的航姿系统设计了一套姿态融合算法。在GPS有效时,卡尔曼滤波的观测量引入双天线GPS输出的航向角,解决航向角观测性弱和估计不准的问题,同时引入互补滤波得到的陀螺修正量,提高了水平姿态角的可观性,融合两种算法提高了解算精度。在GPS无效时,通过互补滤波,抑制陀螺漂移,输出高精度水平姿态角,配合天线所接收信号的强度使‘动中通’正常工作。为验证算法的有效性,进行了动态实验,实验结果表明:该算法在GPS有效的情况下能保证俯仰滚动角(RMSE标准)精度在0.2°以内,航向角精度在0.5°以内,在GPS无效情况下也可使俯仰和滚动角精度长时间维持在0.3°以内,具有一定的工程应用价值。
简介:针对系统误差的不确定性可能会引起滤波精度降低或发散的问题,提出一种新的基于模型预测滤波的前向神经网络算法。首先,采用模型预测滤波估计网络在正向传递过程中的模型误差,并对其进行修正,以弥补模型误差对隐含层权值更新的影响;然后,利用模型预测滤波为神经网络提供精确的训练样本,学习待估计系统的非线性关系。将提出的算法应用于SINS/CNS/BDS组合导航系统,并与扩展卡尔曼滤波进行比较,仿真结果表明,提出的算法得到的姿态误差、速度误差和位置误差分别在[-0.25′,+0.25′]、[-0.05m/s,+0.05m/s]和[-5m,+5m]以内,滤波性能明显优于扩展卡尔曼滤波算法,表明该算法能提高组合导航定位的解算精度。
简介:在Banach空间中利用双线性连续泛函F代替内积引进了新的一类完全广义混合隐似平衡问题,引进了F强单调的概念,提出了该平衡问题的广义辅助问题,证明了广义辅助问题的收敛定理,给出了新的算法和由此算法产生的迭代序列的收敛特征.
简介:针对1点RANSAC(RandomSampleConsensus)单目视觉EKF(ExtendedKalmanFilter)算法中的滤波发散问题,分析了滤波发散的产生原因,提出了一种基于渐消记忆滤波的1点RANSAC单目视觉姿态估计算法。该算法通过在EKF滤波方程中引入加权因子,逐渐加大当前数据的权重,相应地减少旧数据的权重,有效地扼制了算法中的滤波发散问题。最后通过两组验证性实验验证说明了算法的有效性。实验结果表明:该算法能够有效地解决1点RANSAC单目视觉EKF算法中的滤波发散问题,具有更高的精度。第一组双轴联动实验,航向角的平均误差减小2.4158?,俯仰角平均误差减小0.1782?;第二组偏航轴大角度转动实验,摄像机航向角的估计误差一直保持在1.5?以内。
简介:基于Chen-Harker-Kanzow-Smale光滑函数,对单调非线性互补问题NCP(f)给出了一种不可行非内点连续算法,该算法在每次迭代时只需求解一个线性等式系统,执行一次线搜索;算法在NCP(f)的解处不需要严格互补的条件下,具有全局线性收敛性和局部二次收敛性.