简介:在本文中,作者研究了一种特殊的Banach空间,即Orlicz函数空间LM的子集A要构成LN-弱序列紧集合的充分必要条件是什么,给出了第一判别充要定理.
简介:S^p(1≤p≤∞)空间为导数属于Hardy空间H^p的复平面单位圆盘D上所有解析函数组成的空间.令函数φ和φ是D上的解析函数且φ(D)D,则将算子W(φ,φ):f→φfoφ称为加权复合算子.文章给出了当1≤q≤p≤∞,φ∈S^∞时,加权复合算子W(φ,φ)从空间S^p到S^q上的有界性的充要条件.然后通过推广经典的Fejer-Riesz不等式证明了当1〈p≤∞时,S^p到圆盘代数A上的嵌入映射是紧的.
简介:在一致凸Banach空间上,研究了半紧的非扩张压缩映象的修正Ishikawasa三重迭代序列的强收敛问题,建立并证明了若干强收敛定理,推广了Mann和Ishikawa的迭代方法,改进和发展了Xu和贾如鹏等作者的主要结果.
简介:综述了集值映射的某些概念,例如度量正则性、伪Lipschitz性质(Aubin性质)、度量次正则性和Calm性质和这些概念的相互关系以及某些判据.也给出了他们在变分方程解的鲁棒Lipschitz稳定性、约束优化问题的最优性条件、集合族的线性正则性质和广义方程迭代过程的收敛性.
简介:研究p-致凸Banach空间中渐近半压缩映象的修正的Mann迭代过程和修正的Ishikawa迭代过程的强收敛性.本文始终假设X是P-致凸Banach空间.最近,r-渐近半压缩映象的概念被引入,并给出了X中该映象(此时,r=P)的修正的Mann迭代过程和修正的Ishikawa迭代过程的强收敛性定理,文章所得结果改进、推广和统一了近期相关结果.
简介:通过对局部凸空间上凸函数可微性的讨论,首先建立了关于凸函数β可微性的特征定理;定义在局部凸空间E的非空开凸子集D上的每个连续凸函数f均在D的一个稠密的子集上β-可微(也称E具有β-LP性质)的充分必要条件为其对偶E“中的每个w~*紧凸子集均是自己w~*一β暴露点的w~* 闭凸包;然后进一步证明了E~*上的w~*一β扰动优化定理成立,即定义在E~*的每个有界w~*闭集A~*上的w 下半连续有下界的函数g以及每个ε >0均存在x0 A及x E满足使得(g+x)(x )=infA (g+x)且{xi } A ,(g+x)(xi )→infA (g+x)推出xi -xo ,当且仅当E具有β-LP性质.
简介:给出并证明了MengerPN-空间中一类具有(Φ,△)-型概率收缩序列的非线性集值及单值算子方程序列解的存在性与唯一性定理,推广了张石生等人的结果,并利用这些定理获得了几个不动点定理。