简介:假设保险盈余服从跳跃扩散过程,保险资金投资标的包括无风险资产和风险资产两部分,其中股票价格过程服从CEV模型.本文研究了一种终值财富期望指数效用最大化的最优化比例再保险投资问题.利用随机控制理论技术,得到比例再保险投资过程的HJB方程,并从理论上推导出了最优投资策略和价值函数的显示表达式.
简介:本文研究常微分方程组情形的Ambrosetti-Prodi型问题.在非线性项超线性,凸性等条件下.得出随着参数的变化。问题无解,有唯一解,至少有两解的结论。
简介:利用上下解方法,锥理论,Schauder不动点定理,Amann不动点定理以及映射度理论研究Sturm—Liouville边值问题(SL.ρ),在某些特定条件下,得到了有多重非负解的存在性结论.从而一定程度上推广和改进了最近的相关结果.
简介:H_1,H_2,H_3是实希尔伯特空间,CH_1,QH_2是两个非空闭凸子集,AH_1→H_3,B:H_2→H_3是两个有界线性算子.我们的兴趣是解决下面的问题:找x∈C,y∈Q使得Ax=By.Moudafi提出了同步迭代算法(SIM)来解决分裂等式问题.为了利用同步迭代算法(SIM),在计算步长时需要知道有界线性算子的范数,这个范数的数值计算中难以实现.本文的主要目的是介绍一种选择步长的方式使得同步迭代算法的完成不需要任何算子的范数.同时,松弛的同步迭代算法也被提出.最后,论文通过数值试验得出这种步长的选择方法使得并行迭代算法收敛更快.
简介:主要讨论了部分ToeplitzN-矩阵的完成问题及一类特殊结构的位置对称的部分N-矩阵的完成.
简介:应用Gteen函数将分数阶微分方程边值问题可转化为等价的积分方程.近来此方法被应用于讨论非线性分数阶微分方程边值问题解的存在性.讨论非线性分数阶微分方程边值问题,应用Green函数,将其转化为等价的积分方程,并设非线性项满足Caratheodory条件,利用非紧性测度的性质和M6nch’s不动点定理证明解的存在性.