简介:应用线性算子的积分群理论证明M/M^B/1排队模型的时间依赖解的存在唯一性,其次推出M/M/1排队模型的时间依赖解的存在唯一性。
简介:研究了以剩余寿命作为增补变量的M/G/1/K排队模型.利用泛函分析中线性算子半群的积分半群理论讨论了该模型的瞬态解的存在唯一性问题.
简介:证明0是具有可选服务的M/M/1排队模型的主算子及其共轭算子的几何重数为1的特征值,由此推出该模型的时间依赖解强收敛于该模型的稳态解.
简介:研究服务员强制休假的M/M/1排队模型的主算子在左半复平面中的特征值,证明(λ-μ-b)-√(b+μ)2-3λ2-μb/2是该主算子的几何重数为1的特征值.
简介:研究每个忙期中第一个顾客被拒绝服务的M/M/1排队模型的主算子在左半复平面中的特征值,证明对一切θ∈(0,1),(2√λμ-λ—μ)θ是该主算子的几何重数为1的特征值.
简介:一、什么是STUDYGROUPSTUDYGROUP是牛津大学的A.B.Tayler博士和当时他的学生J.Ockendon等人在1968年创立的,它的原名是OxfordStudyGroupwithIndustry。这种活动历时一周,是由数学工作者和工业界人士参加的旨在解决实际问题的研讨会。在研讨会的第一天,由工业界代表陈述要解决的问题和目的要求,通常会有5~6个问题。后续2~3天按问题分组讨论,试图建立问题的数学模型和求解方法来解决问题。若问题比较
简介:研究每个忙期中第一个顾客被拒绝服务的M/M/1排队模型主算子在左半复平面中的特征值,证明2√λμ-λ-μ是该主算子的几何重数为1的特征值。
简介:研究一类失效状态为吸收状态及重试率为常数的M^[X]/M/1排队模型的主算子在左半实轴上的特征值,证明:当顾客的到达率λ,服务员的服务率v,服务员的服务完成率b,顾客的重试率α满足一定的条件时,-α是该主算子的几何重数为1的特征值.