简介:针对在4级海况下船体大幅度晃动,甚至丢失GPS信号的复杂环境,常规算法会导致姿态测量精度急剧下降的情形,为‘动中通’中的航姿系统设计了一套姿态融合算法。在GPS有效时,卡尔曼滤波的观测量引入双天线GPS输出的航向角,解决航向角观测性弱和估计不准的问题,同时引入互补滤波得到的陀螺修正量,提高了水平姿态角的可观性,融合两种算法提高了解算精度。在GPS无效时,通过互补滤波,抑制陀螺漂移,输出高精度水平姿态角,配合天线所接收信号的强度使‘动中通’正常工作。为验证算法的有效性,进行了动态实验,实验结果表明:该算法在GPS有效的情况下能保证俯仰滚动角(RMSE标准)精度在0.2°以内,航向角精度在0.5°以内,在GPS无效情况下也可使俯仰和滚动角精度长时间维持在0.3°以内,具有一定的工程应用价值。
简介:对于具有一定机动能力的弹道式再入目标跟踪问题,稳定性好、鲁棒性强、收敛精度高的估计方法是保证跟踪精度的关键。针对再入运动模型和测量体制的强非线性以及目标机动引起的滤波精度下降问题,提出一种将强跟踪滤波(STF)和基于三阶球面-向径容积规则的容积卡尔曼滤波(CKF)相结合的强跟踪-容积卡尔曼滤波(STCKF)。通过将强跟踪算法中的自适应渐消因子引入到滤波时间更新和测量更新方程中,在线实时调整滤波增益矩阵,能有效避免模型失准造成的滤波性能下降,使该算法兼具CKF滤波精度高和STF鲁棒性强的优点。通过数学仿真表明,改进后的STCKF可以实现对具有机动的弹道式再入目标的高精度跟踪,相对于CKF精度提高50%,并且具有更强的鲁棒性和自适应能力。
简介:设计军用飞机的自主导航系统是军用飞机的一项关键技术。捷联惯导/多普勒雷达/气压高度表组合导航方法虽然在理论上已较完善,但在具体工程实现中却存在诸多问题。针对实际工程要求,分析并建立了一种适用于飞机的低成本光纤惯导/多普勒雷达/气压高度表组合导航系统方案并对该实际系统进行了多次闭合与非闭合路线的跑车试验,对试验结果的分析表明,该方案是有效的,系统能够有效地抑制惯导位置误差随时间积累而发散的趋势,满足实际导航要求。之后针对实际工程中遇到的问题,分析并提出了影响光纤惯导/多普勒雷达/气压高度表组合导航系统性能的主要因素是Doppler雷达、光纤惯导同机体间的安装误差以及组合导航系统中航向角误差的结论。
简介:在详细分析光纤陀螺零漂的基础上,提出了先用滤波算法对光纤陀螺信号进行预处理,然后采用RBF神经网络对滤波后的信号进行建模的方法.针对光纤陀螺信号特点分别采用FLP算法、小波滤波算法、解相关变步长LMS自适应滤波算法对其进行了预处理,比较三种滤波方法,小波滤波算法效果优于其它两种预处理方法,但针对基于预处理后的陀螺信号采用RBF神经网络进行建模时,小波滤波预处理后的信号在建模精度上却是最差的,而对FLP算法滤波后的信号进行RBF建模,建模精度提高了两个数量级。结果表明:基于FLP算法的RBF神经网络在光纤陀螺中的建模是有效的,可大大提高建模的精度。
简介:TNNS(真航向导航系统)由MS860接收机、INS及处理数据的PC/104架构的嵌入式工控机构成.针对TNNS推导了INS(惯性导航系统)的误差模型,提出了适合于TNNS的降阶扩展卡尔曼滤波算法组合GPS和INS。系统在东海作了三次海试,软件及滤波算法平台由C/C++编制.海上试验表明,组合滤波后,INS的位置误差由i00m降低到40m以下;进行最优化滤波后的航向误差α由原来的0.105°减小为0.034°,纵横摇的误差也大幅减小.整个海试结果表明,在TNNS中组合GPS/INS采用的降阶扩展卡尔曼滤波算法,大幅提高了系统精度和可靠性.
简介:为了提高标准Cubature卡尔曼滤波(CKF)的稳定性和鲁棒性,提出一种改进的多重渐消H∞滤波cubamre卡尔曼滤波算法。首先基于系统状态的可观测性给出多重渐消因子矩阵求解过程,提高滤波算法的稳定性,抑制滤波发散;其次,引入H∞鲁棒思想,构造多重渐消H∞滤波Cubature卡尔曼滤波器;最后,提出采用一种奇异值分解的矩阵分解策略代替标准Cubature卡尔曼滤波中的Cholesky分解,进一步提高算法的数值稳定性。实际GPS/INS组合导航实验表明,改进的多重渐消H∞滤波Cubature卡尔曼滤波算法不仅能有效抑制滤波发散提高算法的稳定性,而且对观测野值具有更高的鲁棒性;提出的新算法与标准CKF算法相比,XYZ三个方向的位置精度分别提高了55.8%,46.6%和39.7%。