学科分类
/ 1
11 个结果
  • 简介:针对可分型矩阵的特性,结合2^N类算法为可分型指数矩阵的计算提出一种快速精细积分法.核心思想是:利用可分型矩阵中的子矩阵进行分块计算;增加Taylor展开式的保留项数,减少迭代次数.一方面,程序实现简便,另一方面,数值算例表明:对矩阵维数很大的可分型指数矩阵计算来说,本文的快速精细积分法减少了计算量和存储量,大大地提高了计算效率.

  • 标签: 可分型指数矩阵 2N类算法 快速精细积分法 子矩阵
  • 简介:定义对称轮轨系统对称性分岔的概念,由数值积分得到系统的时间响应并建立对称轮轨系统的离散动态Poincare映射截面及其对称截面,提出“合成分岔图”的构造方法,应用该方法对一两轴转向架系统运行与理想平直轨道上的对称/不对称分岔行为和混沌运动进行分析.在研究速度范围内,发现系统存在大量的对称运动形式,也存在很多的不对称运动形式,系统的对称性刚开始是通过不可捉摸突变而破坏的.

  • 标签: 轮轨系统 “合成分岔图” 对称/不对称 分岔
  • 简介:采用多重反射法对受到外扰的二组元周期梁结构的频率响应进行了研究.施加至Ⅱ周期梁结构上的外部扰动被假定为一入射波,传播波入射到不连续处会产生反射波和透射波,进而在周期结构中会产生多重的反射和透射.首先,基于波的多重反射,考虑施加扰动的组元上的波场;其次,由于波的透射,分别考虑两个传播方向上的其他组元的波场,作为初始波场;最后,可先考虑某个组元右侧的所有组元上的向左传播的波在其上的叠加,作为一次迭代波场;再考虑某个组元左侧的所有组元上的向右传播的波在其上的叠加,作为二次迭代波场.依次类推,基于多重反射法,叠加了入射波引起的多重反射和透射,得到了所有组元的波场.给出了周期梁结构中任一点的波幅与入射波幅之间的函数关系,确定了受外扰的周期梁结构的传播常数及相应的波场的迭代次数.

  • 标签: 周期结构 弯曲波 波的反射 波的透射 频率响应
  • 简介:使用有限元传递矩阵法分析了某大长径比弹箭的固有振动特性,成功求得了其固有振动频率和振型函数,计算结果得到试验验证.该方法兼备有限元法建模方便、应用范围广和传递矩阵法应用灵活、矩阵阶次低、计算速度快的优点,易于分析复杂变截面结构弹箭的振动特性,并且可直接利用商业有限元软件得到该方法仿真所必需的质量矩阵和刚度矩阵.

  • 标签: 大长径比弹箭 固有振动特性 有限元传递矩阵法
  • 简介:尾翼稳定脱壳穿甲弹(APFSDS)是杀伤地面装甲目标的利器.尾翼稳定脱壳穿甲弹在后效期脱壳阶段卡瓣和弹芯存在相互干扰使膛外运动非常复杂,影响脱壳穿甲弹的射击密集度.根据质点运动和动量矩定理的多坐标系的表达形式和脱壳穿甲弹的膛外运动和卡瓣分离规律,建立了能够更精确的描述卡瓣的膛外运动非对称性分离的动力学模型,实例计算了卡瓣的脱壳过程.该模型对分析卡瓣膛外运动和分离过程具有借鉴价值.

  • 标签: 尾翼稳定脱壳穿甲弹 非对称脱壳 多坐标系 质点运动 相对动量矩定理 碰撞识别分析
  • 简介:根据Rumyantsev提出的Poincaré—Chetaev变量下的广义Routh方程.用无限小变换的方法研究它的对称性与守恒量,得到守恒量存在的条件和形式.该结果比以往的Poincaré—Chetaev方程的相关结论更一般.最后.举例说明结果的应用。

  • 标签: Poincaré-Chetaev变量 广义Routh方程 对称性 守恒量
  • 简介:根据Mindlin微结构理论重新推导了含微结构的二维固体中孤立波传播的控制方程.利用行波变换,把复杂的非线性偏微分方程组简化为一非线性常微分方程.最后用动力系统定性分析理论,分析了含微结构的二维固体中孤立波的存在条件及其几何特性,证明了当介质中的某些参数满足适当条件时,在含微结构的二维固体中可以存在一种非对称孤立波.

  • 标签: 微结构二维固体 孤立波 存在条件
  • 简介:研究了一些非线性偏微分方程的非古典势对称和非古典对称,得到了某些方程的新的势对称和新的对称,同时也得到了其伴随系统的新的对称,并求出了一些相似解.这些解对进一步研究这些非线性偏微分方程所描述的物理现象具有广泛的应用价值.

  • 标签: 非线性偏微分方程 非古典势对称 非古典对称 相似解
  • 简介:本文以一类单自由度双边非对称碰撞振动系统为研究对象,采用广义Hertz接触模型表示碰撞过程,考察系统在宽带随机激励下的稳态响应.应用基于广义谐和函数的随机平均法推导出系统在宽带随机外激励下的伊藤随机微分方程,通过求解相应的稳态FPK方程,得到系统关于幅值、能量和位移的稳态概率密度以及位移与速度的联合稳态概率密度.另外,将系统的随机响应近似为马尔可夫过程,利用广义胞映射法得到系统的近似稳态响应.最后通过与蒙特卡罗模拟结果的对比,验证了随机平均法和广义胞映射法的有效性.

  • 标签: 碰撞振动系统 广义Hertz接触模型 随机平均法 稳态概率密度 广义胞映射
  • 简介:利用群论的方法研究系统的对称性,可以将对称系统分解为一系列互相独立的子系统,使系统的H2和H∞控制可以在低维子系统上设计实现,从而减少控制系统设计中的计算量,这一点对于大规模系统的控制尤其重要.简要介绍了利用系统对称性简化Lyapunov方程和Riccati方程的求解,以及计算控制系统的范数等几个例题,这些都是H2和H∞控制中常见的计算问题.

  • 标签: H2/H∞控制 群表示理论 对称系统 LYAPUNOV方程 RICCATI方程 应用