学科分类
/ 1
19 个结果
  • 简介:研究了粘弹性夹层圆板的自由振动特性.基于经典弹性薄板理论和Kelvin-Voigt粘弹性本构方程,建立了粘弹性夹层圆板振动控制方程.采用分离变量法导出了粘弹性夹层圆板的自然频率及振型解析表达式,计算了固支和简支粘弹性夹层圆板的自然频率,并与有限元计算结果进行比较;讨论了粘弹性夹层圆板的夹心层比率对自然频率及衰减系数的影响.研究表明:(1)随着夹心层厚度的增大,系统频率先增大后减小,高阶时该趋势表现更为明显;(2)随着夹心层厚度的增大,衰减系数一直增大,高阶时该趋势表现更为明显.

  • 标签: 粘弹性夹层圆板 自由振动 Kelvin-Voigt 分离变量法
  • 简介:传统航天器结构模态试验通常会用来检验结构有限元分析模型,但往往是通过人工调整有限元模型参数来修正模型,分析与试验联系不紧密,影响后续分析结果的精度、研制周期和经费等.为改变航天器模态分析及试验现状,文中介绍了模态分析-试验体系工程研制流程在理论上的可行性,并以某缩比舱段为例,基于Virtualab-Nastran软件平台,完整实施模态分析-试验体系过程,包括预试验分析、模态试验、模型修正等过程,紧密联系模态分析、试验,并依据试验结果准确快速修正有限元模型,使分析结果与试验接近,实现精确建模.

  • 标签: 模态分析 模态试验 模型修正 有限元
  • 简介:以灰色预测控制理论为基础,采用现代控制理论中的二次型优化原理,以控制力和响应加权最小为目标函数,设计了两种基于灰色预测理论的转子系统振动主动控制方案--灰色GM(1,1)预测优化控制方案和灰色Verhuslt预测优化控制方案.并将该两种方案分别应用于带电磁阻尼器转子轴承系统的转子振动主动控制中,通过数值仿真验证了两种控制方法的有效性,并对两种方法的控振效果进行了比较.

  • 标签: 转子系统 振动主动控制 灰色GM(1 1)预测优化控制 灰色Verhuslt预测优化控制
  • 简介:针对自治混沌系统,基于系统稳定性理论,通过设计合适的非线性反馈控制器,给出了普适的广义投影同步定理.定理中函数的选择可以为系统的线性或非线性函数,更具灵活性和普适性;文中理论还可以通过调整参数提高广义投影同步的速度.数值仿真进一步验证了本文理论的有效性和实用性.

  • 标签: 广义投影同步 自治混沌系统 非线性反馈 数值仿真
  • 简介:体系统多点接触碰撞问题可以归结为一个将系统的动力学方程与并协性约束方程相结合的问题.针对这样一个含并协性条件的混合方程组,建立了基于LCP格式的包含碰撞/接触问题的多刚体系统动力学分析框架,提出了一种基于步长评价准则的变时间步长的数值求解策略,实现了无摩擦情况下多刚体系统多点接触碰撞问题的数值算法.最后给出了数值算例,验证了算法的有效性.

  • 标签: 多体动力学 接触碰撞 LCP方法
  • 简介:研究了受到打击的空间多刚体系统考虑库仑摩擦时动力学的求解方法.在引入新的无量纲的时间参数后,通过建立相应的动量-冲量的一阶微分方程,将在趋近于零的冲击区间的讨论变为在有限区间中来分段研究含滑动-粘滞的冲击过程,得到了受到打击的空间离散系统考虑库仑摩擦时的动力学的求解方法.

  • 标签: 空间多刚体系统 冲击问题 空间离散系统 动力学
  • 简介:针对日益受到关注的液体晃动问题,提出了一种基于浅水波理论的研究方案.该方案采用浅水波理论而非势流理论导出系统控制方程,并通过哈密顿体系表达;利用中心有限差分法和Stormer-Yerlet算法进行空间和时间离散;模拟了不同初值条件下的液体晃动情况并对比分析了影响系统非线性响应的主要因素.结果表明,基于浅水波理论能有效解决液体晃动问题;与Euler格式对比,Stormer-Verlet算法精度较高;除共振外对于系统非线性响应的影响容器初始位移比初始速度更显著;非共振情况一定条件下,充液容器运动过程中液体晃动能起到阻尼作用.

  • 标签: 液体晃动 浅水波理论 初值问题 数值模拟 非线性
  • 简介:在实际工程领域中存在着大量接触碰撞等非连续动力学问题,现有的解决柔性多体系统连续动力学过程的建模理论与方法,已经无法解决或无法很好解决这些问题.本文基于变拓扑思想,提出了附加接触约束的柔性多体系统碰撞动力学建模理论;通过设计柔性圆柱杆接触碰撞实验,验证了所提出附加约束接触碰撞模型的有效性;针对柔性多体系统全局动力学仿真面临时间和空间的多尺度问题,提出多变量的离散方法,从而提高了柔性多体系统非连续动力学的仿真效率.

  • 标签: 柔性多体系统 接触碰撞 变拓扑 数值仿真 实验研究
  • 简介:把柔性梁的离散坐标法——有限段法扩展到规则柔性板中,视柔性板为带关节柔性(刚度、阻尼)的多刚体系统,详细阐述了离散坐标法的基本思想、理论依据,采用牛顿-欧拉方法建立了动力学方程,借助通用有限元软件和动力学仿真程序验证了离散坐标法可以解决具有几何非线性变形的规则柔性板构件的多体系统动力学问题。

  • 标签: 离散坐标法 柔性板 多刚体模型 动力学方程
  • 简介:基于将多体系统拓扑结构的形成看作是一个动态搭建过程,本文提出了一个能够由铰与物体之间关联矩阵自动选取切断铰并自动对物体和铰进行规则标号的算法.利用该算法,在建立系统动力学方程过程中可以采用铰坐标但无需人为选定切断铰,从而在很大程度上简化了输人工作有效地避免了很多人工错误.

  • 标签: 多体系统 闭环 切断铰
  • 简介:根据弹性薄板自由振动问题的基本方程,把问题引入到哈密顿对偶体系中.x方向模拟为时间,选取弯矩,等效剪力,转角和挠度为对偶向量,得到了在不同边界条件时关于x轴对称和反对称时的解析解.算例研究了四边固支薄板的自由振动情形,从而推广了哈密顿体系的应用范围,验证了哈密顿体系求解方法在自由振动问题中的有效性.

  • 标签: 哈密顿体系 自由振动 矩形薄板 一般解 不同边界条件 振动问题
  • 简介:研究离心力和温度变化引起的附加弯曲变形对复合材料柔性多体系统振动特性的影响.从本构关系和非线性应变与位移关系式出发,用虚功原理和有限单元法建立了复合材料柔性梁的动力学变分方程,在此基础上建立了复合材料柔性多体系统的动力学方程.对曲柄-连杆-滑块机构的数值仿真表明,对于非对称的复合材料梁,各层弹性模量和热膨胀系数的差异会引起附加弯曲变形,从而影响系统的振动特性.

  • 标签: 复合材料多体系统 几何非线性 附加弯曲变形 动力学 热效应
  • 简介:基于连续Galerkin方法,给出非完整约束下多体系统时间离散的变分数值积分方法.首先对非完整多体系统Hamilton正则方程的弱形式进行时间离散,得到变分积分公式,然后讨论该积分方法对能量及约束的保持,最后以蛇板为例对该方法进行数值验证和比较.

  • 标签: 多体系统 非完整约束 数值积分 GALERKIN方法 蛇板
  • 简介:圆射流碎裂过程的理论研究对于发动机喷雾与燃烧科学研究至关重要,线性稳定性理论是对射流碎裂过程研究的一种重要方法.论述了粘性圆射流在不可压缩气体介质中的线性稳定性理论分析,应用液、气相的线性化纳维-斯托克斯量纲一控制方程组和量纲一化的线性运动学和动力学边界条件,采用对动量方程点乘哈密顿算子的方法,推导出了n阶量纲一色散准则关系式.

  • 标签: 线性稳定性理论 圆射流 n阶色散关系式 修正贝塞尔方程
  • 简介:考虑了剪滞翘曲应力自平衡条件、剪切变形和剪力滞后效应等因素的影响,本文提出了一种对宽翼薄壁T形梁动力学特性的分析方法.分析中为了准确反应T形梁翼板的动位移变化,三个广义动位移被引入,且以能量变分原理为基础建立了T形梁动力反应的控制微分方程和自然边界条件,据此对T形梁的动力反应特性进行了分析,揭示了T形梁桥动力反应的规律.算例中,对比了考虑和不考虑剪滞翘曲应力自平衡条件对T形梁动力反应的影响,结果显示考虑剪滞翘曲应力自平衡条件的计算方法与有限元数值解吻合更好.

  • 标签: T形梁 剪力滞后 自平衡条件 动力反应 能量变分原理
  • 简介:针对多体系统动力学微分-代数方程求解问题,研究基于Lie群表达的约束稳定方法.首先引入新的Lagrange乘子,结合位移约束、速度级约束和加速度级约束方程,构造了新的Lie群微分-代数方程.然后使用向后差商隐式方法和CG(Crouch-Grossman)方法,对微分–代数方程进行离散求解,得到精确度较高的动力学仿真结果.该方法在精确保持各级约束方程的同时,保持旋转矩阵的正交性,并且使系统总能量误差较小.

  • 标签: 多体系统动力学 微分-代数方程 LIE群 约束稳定
  • 简介:针对多体系统动力学数值仿真问题,研究基于Hermite插值的离散变分方法.首先对广义坐标和广义速度进行Hermite插值,结合Gauss数值积分方法,利用Hamilton原理和离散力学变分原理,建立了含已知导数信息和含未知导数信息的Hermite插值离散变分数学模型,求解得到精确度较高的动力学仿真结果.该方法可以在步长较大时精确保持约束方程,并保持系统总能量在一定范围内有界变化,适用于长时间仿真情况.

  • 标签: 多体系统动力学 离散变分方法 HERMITE插值 高斯求积
  • 简介:采用Timoshenko梁修正理论研究了有梯度界面层双材料梁的振动问题,利用静力方程确定了有梯度界面层双材料梁的中性轴位置,在此基础上应用Timoshenko梁修正理论建立了有梯度界面层双材料梁的振动方程,求得其自振频率表达式及其在简谐荷载作用下强迫振动的解析解.讨论分析了梯度界面层高度等因素对有梯度界面层双材料梁的振动影响,并用有限元法验证了Timoshenko梁修正理论.通过实例计算,得到了梯度界面层高度等因素对有梯度界面层双材料梁振动特性有较大影响的结论.

  • 标签: TIMOSHENKO梁 梯度界面层 中性轴 振动
  • 简介:利用群论的方法研究系统的对称性,可以将对称系统分解为一系列互相独立的子系统,使系统的H2和H∞控制可以在低维子系统上设计实现,从而减少控制系统设计中的计算量,这一点对于大规模系统的控制尤其重要.简要介绍了利用系统对称性简化Lyapunov方程和Riccati方程的求解,以及计算控制系统的范数等几个例题,这些都是H2和H∞控制中常见的计算问题.

  • 标签: H2/H∞控制 群表示理论 对称系统 LYAPUNOV方程 RICCATI方程 应用