简介:主要讨论了部分ToeplitzN-矩阵的完成问题及一类特殊结构的位置对称的部分N-矩阵的完成.
简介:应用Gteen函数将分数阶微分方程边值问题可转化为等价的积分方程.近来此方法被应用于讨论非线性分数阶微分方程边值问题解的存在性.讨论非线性分数阶微分方程边值问题,应用Green函数,将其转化为等价的积分方程,并设非线性项满足Caratheodory条件,利用非紧性测度的性质和M6nch’s不动点定理证明解的存在性.
简介:在Tikhonov正则化方法的基础上将其转化为一类l1极小化问题进行求解,并基于Bregman迭代正则化构建了Bregman迭代算法,实现了l1极小化问题的快速求解.数值实验结果表明,Bregman迭代算法在快速求解算子方程的同时,有着比最小二乘法和Tikhonov正则化方法更高的求解精度.
简介:对静态机器人避障问题进行了全面分析,对最短路的设计进行了理论分析和证明,建立了机器人避障最短路径的几何模型,对最短时间路径问题通过建立非线性规划模型,有效地解决了转弯半径、圆弧圆心位置和行走时间等问题.
简介:四色问题又称四色猜想,是世界近代三大数学难题之一.1976年两位美国数学家Appel与Haken借助计算机给出了一个证明.时至今日,四色问题的正确性早已得到数学界所承认.但是围绕它的非计算机证明,在近几十年来涌现出了各种不同的研究成果.一方面丰富了图论的内容,另一方面又促进了图的染色理论的发展.本文从研究四色问题的意义出发;揭示了四色问题所隐藏的深刻规律,在此基础上提出了一个比四色问题更具有广泛意义的理论构想.主要目地为四色问题的非计算机证明提供一个研究方向.