简介:本文基于多胞形上D.C.函数的棱柱算法,给出了一维参数化小波滤波器逼近问题的一种算法。
简介:构建了一类捕食者相互竞争且具有不同功能反应的随机种群模型.综合考虑白噪声和电噪声的扰动对模型的影响,研究了系统的动力学行为.运用切比雪夫不等式,讨论了系统的有界性.构造恰当的李雅普诺夫函数并运用It8公式,得到了系统随机持久和灭绝的条件.最后,利用指数鞅不等式等技巧,研究了系统的渐近性.
简介:数学实验是指为获得某种数学理论,检验某个数学猜想,解决某些数学问题,实验者运用一定的物质手段,在数学思维活动的参与下,在典型的实验环境中或特定的实验条件下所进行的一种数学实践探索活动.
简介:本文利用等价方程组,友矩阵与Jordan标准型,研究了n阶常系数线性非齐次常微分方程P(D)x=acose^t+bsine^t其中P(D)=D^n+a1D^n-1+…+an,D=1/dt,a1,a2,…a,a,b为任意实常数,在友矩阵具有n个不同的特征根的条件下,给出了求上述方程的特解的方法,最后给出一个详细的实例。
简介:提出了一类求解带有箱约束的非凸二次规划的新型分支定界算法.首先。把原问题目标函数进行D.C.分解(分解为两个凸函数之差),利用次梯度方法,求出其线性下界逼近函数的一个最优值,也即原问题的一个下界.然后,利用全局椭球算法获得原问题的一个上界,并根据分支定界方法把原问题的求解转化为一系列子问题的求解.最后,理论上证明了算法的收敛性,数值算例表明算法是有效可行的.
简介:1提出问题已知:四边形ABCD中,J、K、L、M分别是AB、BC、CD、DA的中点,依次将,J、K、L、M四点连接,猜想四边形JKLM是什么四边形?
简介:在控制理论和控制工程中,镇定控制器的设计是一个经典问题。许多有关这个问题的结论一般都是针对线性系统。对于非线性系统,很少见到有构造性结果能用于控制工程中。本文针对一类广泛的非线性控制系统,我们构造了一些控制器,这些判据在工程实际问题中将具有一定的指导意义。
简介:图形计算器(GraphingCalculator,以下简称GC),问世于上世纪80年代.是一种专门用于数学学习与教学(中学与大学)的手持技术.其外形与大小类似科学计算器,但功能更为强大.它兼具绘图(绘制函数图像,甚至进行几何作图)、数表处理与统计计算等功能.有的还能做代数符号演算,解决多项式、线性代数与微积分(甚至偏微分方程)中的计算问题.
参数化滤波器逼近问题的棱柱算法
一类具有马尔可夫转换和不同功能反应的随机捕食模型的动力学分析
利用图形计算器开展数学实验的实践探索
n阶常系数线性非齐次常微分方程P(D)x=acose^t+bsine^t的特解
基于D.C.分解的一类箱型约束的非凸二次规划的新型分支定界算法
利用HPPrime图形计算器探究中点四边形
一类具有分离变量的非线性离散系统的镇定控制器
恰当地使用图形计算器——信息技术与中学数学新课程整合案例分析