学科分类
/ 3
60 个结果
  • 简介:[目的/意义]区块链本质上是一个共享数据库,存储数据是不可篡改、公开透明,应用在农产品供应链上可以提高产品透明度,吸引更多消费者,但也会存在消费者隐私担忧问题.消费者隐私担忧程度影响着农产品零售商对于是否售卖区块链溯源农产品决策.通过研究区块链溯源农产品零售商竞争策略、定价最优决策影响,零售商可以根据自己市场情况制定市场竞争策略,提高自己竞争力,优化农产品供应链.[方法]基于纳什均衡Stackelberg博弈理论,建立初始农产品零售商与新进零售商价格博弈模型,研究分析农产品零售商之间竞争决策,利用区块链智能合约技术将博弈过程以及对应情况写入智能合约,保障合作博弈有效进行,将博弈结果上链来规范博弈双方合作行为.[结果讨论]消费者隐私担忧问题会影响农产品价格利润.此外,通过两家农产品零售商均衡策略..

  • 标签: 区块链供应链农产品零售商消费者隐私博弈论
  • 简介:摘要 : 太阳能杀虫灯物联网( SIL-IoTs)是一种基于农业场景与物联网技术新型物理农业虫害防治工具,通过无线传输太阳能杀虫灯组件状态数据,用户可后台实时查看太阳能杀虫灯运行状态,具有杀虫计数、虫害区域定位、辅助农情监测等功能。但随着 SIL-IoTs快速发展与广泛应用,故障诊断难维护难等矛盾日益突出。基于此,本研究首先阐述了 SIL-IoTs结构研究现状,分析了故障诊断重要性,指出了故障诊断是保障其可靠性主要手段。接着介绍了目前太阳能杀虫灯节点自身存在故障及其在无线传感网络( WSNs)体现,并进一步 WSNs故障进行分类,包括基于行为、基于时间、基于组件以及基于影响区域故障四类。随后讨论了统计方法、概率方法、层次路由方法、机器学习方法、拓扑控制方法移动基站方法等目前主要使用 WSNs故障诊断方法。此外,还探讨了 SIL-IoTs故障诊断策略,将故障诊断从行为上分为主动型诊断与被动型诊断策略,从监测类型上分为连续诊断、定期诊断、直接诊断与间接诊断策略,从设备上分为集中式、分布式与混合式策略。在以上故障诊断方法与策略基础上,介绍了后台数据异常、部分节点通信异常、整个网络通信异常未诊断出异常但实际存在异常四种故障现象下适用 WSNs故障诊断调试工具,如 Sympathy、 Clairvoyant、 SNIF Dustminer。最后,强调了 SIL-IoTs特性故障诊断带来潜在挑战,包括部署环境复杂、节点任务冲突、连续性区域节点无法传输数据多种故障诊断失效等情形,并针对这些潜在挑战指出了合理研究方向。由于 SIL-IoTs为农业物联网典型应用,因此本研究可扩展至其它农业物联网,并为这些农业物联网故障诊断提供参考。

  • 标签: 太阳能杀虫灯 无线传感网络 农业物联网 故障诊断 虫害
  • 简介:摘要:持续、稳定且迅速提高农作物产量,无疑社会经济持续发展具有极大促进推动作用,为了不断提高农作物产量以及质量,必须大力推广应用先进、成熟农作物种植技术。这些高效农作物技术包括高产、优质、高效栽培技术,需要对原有传统落后低效农作物种植技术进行改进优化。需要根据实际情况进行深入、细致地研究分析,并进行系统地总结优化,根据现代化社会发展进程科技发展实际需要,提出更科学、更符合农民现实需求农业栽培种植发展模式,积极进行推广应用,以推动我国农业经济发展。基于此,本文就农作物高产栽培技术以及推广应用进行分析探究。

  • 标签: 农作物 高产栽培技术 推广应用
  • 简介:摘要:目前,针对肉牛消化不良治疗方法多种多样。这些方法在不同程度上可以缓解肉牛消化不良症状,提高肉牛消化能力食欲。然而,由于肉牛消化不良成因复杂多样,单一治疗方法往往难以取得理想效果。因此,本文旨在综合分析评价各种治疗措施效果,为肉牛消化不良治疗提供更为全面有效指导。

  • 标签: 肉牛 消化不良 治疗措施
  • 简介:<正>各省、自治区、直辖市计划单列市、新疆生产建设兵团农业(农林、农牧、农牧渔业)厅(局)、化工厅(局)、供销合作社:除草醚是稻田除草剂,我国从60年代开始生产、使用,到80年代成为使用量最大除草剂品种,防除我国稻田杂草发挥过积极作用。但是,据国外权威机构研究表明,除草醚试验动物具有致畸、致突变、致癌作用,多数国家已禁止生产、使用。近几年,我

  • 标签: 积极作用 通知 自治区 除草醚 稻田杂草 新疆生产建设兵团
  • 简介:[目的/意义]针对现有规模化猪场生猪计数需求场景多,人工计数效率低、成本高等问题,提出一种基于改进实例分割深度学习算法微信公众平台区域养殖生猪计数方法.[方法]首先,利用智能手机拍摄养殖场猪只视频,对视频抽帧进一步生成图像数据集.其次,通过改进卷积块注意力模块(Convolutional Block Attention Module,CBAM)忽略通道与空间相互作用通道注意力降维操作带来效率较低问题,提出高效全局注意力模块,并将该模块引入基于回归分析单阶段实例分割网络YOLO(You Only Look Once)v8获取生猪图像进行分割,构建新识别模型YOLOv8x-Ours,以实现高精度生猪计数.最后,基于微信公众平台开发微信小程序,并嵌入综合表现最优生猪计数模型,实现使用智能手机拍摄图像进行生猪快速计数.[结果讨论]在测试集上试验结果表明,与现有实例分割模型..

  • 标签: 生猪计数深度学习微信小程序YOLOv8实例分割
  • 简介:[目的/意义]针对传统大米品质监管追溯系统存在品控数据链机制不够完善、品控信息可追溯程度不足、数据上链效率低隐私信息泄露等问题,提出一种差分隐私增强大米区块链品控模型.[方法]首先,结合大米全产业链,设计数据传输流程,涵盖种植、收购、加工、仓储销售等各环节,有效保证品控数据链连续性;其次,为解决上链数据量大、上链效率低问题,将大米全产业链各环节关键品控数据存储于星际文件系统(InterPlanetary File System,IPFS),然后将存储完成后返回哈希值上链;最后,为提高品控模型信息可追溯程度,将种植环节关键品控数据涉及隐私部分信息通过差分隐私(Differential Privacy)处理后展示给用户,模糊化个体数据,以提高品控信息可信度,同时也保护了农户种植隐私.基于该品控模型,设计了差分隐私增强大米区块链品控系统,并在相关大米企业实际运行.[结..

  • 标签: 星际文件系统区块链品控高效上链差分隐私增强信息追溯
  • 简介:<正>各省、自治区、直辖市计划单列市农业(农牧渔业、农林、农牧)厅(局):茶叶是我国人民重要生活资料,同时又是出口创汇主要农产品。氰戊菊酯于80年代普遍用于茶叶生产中防治害虫,由于其乳油含量用药量高,在茶叶残留量明显高于其它菊酯类农药,大量茶叶样品检测结果表明,氰戊菊酯成为我国茶叶残留检出率超标率最高农药之一。目前,一些发达国家和地区茶叶农药残留限量规定得非

  • 标签: 氰戊菊酯 农药残留限量 茶叶样 茶树 超标率 用药量
  • 简介:摘要 : 准确获取西兰花花球面积新鲜度是确定其长势关键步骤,本研究通过深度残差网络 ResNet进行改进得到一种新型西兰花花球分割模型,并通过花球部位黄绿颜色占比判断其新鲜度,实现低成本高效准确地西兰花表型信息提取。主要技术流程包括:( 1)基于地面自动影像获取平台拍摄西兰花花球正射影像并建立原始数据集;( 2)训练图像进行预处理并输入模型进行分割;( 3)基于颜色信息用粒子群结构 PSO大津法 Otsu对分割结果进一步进行阈值分割,获取其新鲜度指标。试验结果表明:本研究建立分割模型精度优于传统深度学习模型基于颜色空间变换阈值分割模型, 4个评价指标结构相似性指数 (SSIM)、平均精度 (Precision)、平均召回率 (Recall)、 F-度量 (F-measure)结果分别为 0.911、 0.897、 0.908 0.907,相比于传统方法提升了 10%-15%,且土壤反射率波动、冠层阴影、辐射强度变化等干扰具有一定鲁棒性。同时,在分割结果基础上采用 PSO-Otsu法可以实现花球新鲜度快速分析,其精度超过了 0.8。本研究结果实现了西兰花田间多表型参数高通量获取,可以为作物田间长势监测研究提供重要参考。

  • 标签: 深度学习 西兰花表型 机器视觉 自动分级 田间平台
  • 简介:摘要 : 土壤养分作为农业生产重要指标,含量过少会降低农作物产量,过多则会造成环境污染。因此,快速、准确检测土壤养分对于精准施肥提高作物产量具有重要意义。基于取样化学分析传统方法能够全面准确地检测土壤养分,但检测过程中土壤取样预处理过程繁琐、操作复杂、费时费力,不能实现土壤养分原位快速检测。本研究基于调制近红外光谱,提出一种土壤养分主动式近场遥测方法,可有效避免土壤反射自然光干扰。该方法使用波长范围 1260~1610 nm 8通道窄带激光二极管作为近红外光源,通过测量 8通道激光光束土壤反射率,建立土壤养分氮( N)关于土壤反射率计量模型,实现了 N快速检测。在 74组已知 N含量土壤样品,选取 54组作为训练集, 20组作为预测集。基于一般线性模型,训练集中土壤 N含量与土壤反射率定量化参数进行训练,筛选显著波段后计量模型 R2达到 0.97。基于建立计量模型,预测集中土壤 N含量预测值与参考值决定系数 R2达到 0.9,结果表明该方法具有土壤养分现场快速检测能力。

  • 标签: 土壤氮素 近红外光谱 近场遥测 锁相放大 光电探测
  • 简介:摘要 : 光是植物进行光合作用主要能量来源,光照好坏直接影响作物产量品质。本研究针对现有植物补光系统多以功能叶光合能力为基准进行冠层补光,导致冠层新生叶光抑制、株间功能叶位补光不足以及补光位置不能适应作物生长进行动态调整问题,以黄瓜为研究对象,设计了一种基于植株需光差异特性设施黄瓜立体光环境智能调控系统。该系统由智能控制子系统、冠层 -株间 LED补光子系统、冠层 -株间环境监测子系统补光灯升降子系统组成,通过 ZigBee技术实现各子系统间无线通信。其中冠层 -株间环境监测子系统分别获取冠层株间环境信息并发送至智能控制子系统,智能控制子系统根据环境实时信息调用冠层调控模型株间适宜叶位调控模型获得相应调控目标值,并将其下发至冠层 -株间补光灯,实现冠层与株间补光灯动态实时调控。在陕西省泾阳县蔬菜产业综合服务区蔬菜基地分别部署立体补光设备传统冠层补光设备,并进行系统调控效果验证试验。结果表明,立体补光区黄瓜植株株高茎粗显著增长,其中相比传统冠层补光区平均株高、茎粗分别增长了 8.03% 7.24%,相比自然处理区平均株高、茎粗分别增长了 26.51% 36.03%;在一个月采摘期内,立体补光区相比传统冠层补光区自然处理区产量分别提升了 0.28 1.39 kg/m2,经济效益分别增加了 2.82 4.88 CNY/m2,说明立体光环境调控系统能够提高经济效益,具有应用推广价值。

  • 标签: 设施光环境 ZigBee 黄瓜叶位 立体补光 智能调控 PWM
  • 简介:摘要 : 为提高现有苹果目标检测模型在硬件资源受限制条件下性能适应性,实现在保持较高检测精度同时,减轻模型计算量,降低检测耗时,减少模型计算存储资源占用目的,本研究通过改进轻量级 MobileNetV3网络,结合关键点预测目标检测网络( CenterNet),构建了用于苹果检测轻量级无锚点深度学习网络模型( M-CenterNet),并通过与 CenterNet单次多重检测器( Single Shot Multibox Detector, SSD)网络比较了模型检测精度、模型容量运行速度等方面的综合性能。模型测试结果表明,本研究模型平均精度、误检率漏检率分别为 88.9%、 10.9% 5.8%;模型体积帧率分别为 14.2MB 8.1fps;在不同光照方向、不同远近距离、不同受遮挡程度不同果实数量等条件下有较好果实检测效果适应能力。在检测精度相当情况下,所提网络模型体积仅为 CenterNet网络 1/4;相比于 SSD网络,所提网络模型 AP提升了 3.9%,模型体积降低了 84.3%;本网络模型在 CPU环境运行速度比 CenterNet SSD网络提高了近 1倍。研究结果可为非结构环境下果园作业平台轻量化果实目标检测模型研究提供新思路。

  • 标签: 机器视觉 深度学习 轻量级网络 无锚点 苹果检测
  • 简介:摘要 : 水稻叶片叶绿素含量遥感诊断是实现水稻精准施肥核心要素。本研究通过分析寒地水稻关键生育期叶片高光谱反射率信息,同时结合 PROSPECT模型叶绿素含量吸收系数,参考借鉴现有高光谱植被指数构造方法形式,利用相关性分析、连续投影法、遗传算法优化粗糙集属性简约法进行高光谱特征选择,提出仅含有 695、 507 465nm 3个高光谱特征波段红边优化指数( ORVI)。与 Index Data Base数据库其他用于叶绿素含量反演植被指数,包括 ND528,587、 SR440,690、 CARI、 MCARI反演结果进行了对比分析,结果表明: IDB数据库已有 4种植被指数叶绿素含量反演模型决定系数 R2分别为 0.672、 0.630、 0.595 0.574; ORVI植被所建立叶绿素含量反演模型决定系数 R2为 0.726,均方根误差 RMSE为 2.68,精度高于其他植被指数,说明了 ORVI在实际应用,能够作为快速反演水稻叶绿素含量高光谱植被指数。本研究能够为寒地水稻叶绿素含量高光谱遥感诊断管理决策提供一定客观数据支撑模型参考。

  • 标签: 植被指数 叶绿素反演 水稻叶片 高光谱遥感 红边优化指数 ORVI
  • 简介:摘要 : 叶片湿润时间( LWD)是植物病害模型重要输入变量之一,它与许多叶部病原菌侵染有关,影响病原侵染发育速率。为了准确地预测日光温室黄瓜病害发生时间方位,本研究于 2019年 3月 9月在北京两个不同类型日光温室内按照棋盘格法设置了 9个采样点部署温湿光传感器目测叶片湿润时间,每隔 1 h采集一次温度、湿度、辐射叶片湿润数据进行定量估算分析。分析结果表明: BP神经网络模型在两个温室试验条件下获得了相似的准确度( ACC为 0.90 0.92),比相对湿度经验模型估算叶片湿润时间准确度( ACC为 0.82 0.84)更高,平均绝对误差 MAE分别为 1.81 1.61 h,均方根误差 RSME分别为 2.10 1.87,决定系数 R2分别为 0.87 0.85;在晴天和多云天气条件下,叶片湿润时间空间分布总体规律是南部>中部>北部,南面是叶片湿润平均时间( 12.17 h/d)最长区域;由东向西方向上,叶片湿润时间空间分布总体规律是东部>西部>中部,中部是叶片湿润平均时间( 4.83 h/d)最短区域;雨天叶片湿润平均时间比晴天和多云长,春季秋季分别为 17.15 17.41 h/d。这些变化差异温室黄瓜种群水平方向叶片湿润时间分布具有重要影响,与大多数高湿性黄瓜病害发生规律密切相关。本研究为预测温室黄瓜病害分布提供了有价值参考,控制病害流行减少农药使用具有重要意义,提出区域化分析温室内叶片湿润时间方法,可以为模拟日光温室叶片湿润时间空间分布提供参考。

  • 标签: 日光温室 估算模型 区域化 叶片湿润时间 BP神经网络 传感器
  • 简介:[目的/意义]奶牛跛行检测是规模化奶牛养殖过程亟待解决重要问题,现有方法检测视角主要以侧视为主.然而,侧视视角存在着难以消除遮挡问题.本研究主要解决侧视视角下存在遮挡问题.[方法]提出一种基于时空流特征融合俯视视角下奶牛跛行检测方法.首先,通过分析深度视频流跛行奶牛在运动过程位姿变化,构建空间流特征图像序列.通过分析跛行奶牛行走时躯体前进左右摇摆瞬时速度,利用光流捕获奶牛运动瞬时速度,构建时间流特征图像序列.将空间流与时间流特征图像组合构建时空流融合特征图像序列.其次,利用卷积块注意力模块(Convolutional Block Attention Module,CBAM)改进PP-TSMv2(PaddlePad-dle-Temporal Shift Module v2)视频动作分类网络,构建奶牛跛行检测模型Cow-TSM(Cow-Temporal Shift Module).最后,分别在不同输..

  • 标签: 奶牛跛行检测时空融合视频动作分类深度图像注意力机制TSM
  • 简介:摘要 : 含水量是表征水稻生理健康状况关键参数,精确预测水稻含水量对于水稻育种大田精准管理具有重要意义。目前,利用无人机搭载光谱图像传感器监测作物生长研究主要集中在利用植被指数评估作物在单一或者几个生育期生长参数,针对作物含水量监测研究非常有限。本研究主要利用多旋翼无人机低空遥感平台获取不同生育期水稻冠层 RGB图像多光谱图像,通过提取植被指数纹理特征,分析水稻动态生长变化,并构建了基于随机森林回归方法含水量预测模型。试验结果表明:( 1)从无人机图像提取植被指数、纹理特征以及地面测量含水量都能用于监测水稻生长,并且这些参数随水稻生长呈现出了相似的动态变化趋势;( 2)与 RGB图像相比,多光谱图像评估水稻含水量具有更高潜力,其中归一化光谱指数 NDSI771,611实现了更好预测精度( R2=0.68, RMSEP=0.039, rRMSE =5.24%);( 3)融合植被指数纹理特征能够进一步改善含水量预测结果( R2=0.86, RMSEP=0.026, rRMSE=3.51%),预测误差 RMSEP分别减小了 16.13% 18.75%。上述结果表明,基于无人机遥感技术监测水稻含水量是可行,可为农田精准灌溉和田间管理决策提供新思路。

  • 标签: 无人机低空遥感 水稻含水量 RGB图像 多光谱图像 植被指数 纹理特征 特征融合
  • 简介:摘要 : 随着无线终端数量快速增长多媒体图像等高带宽传输业务需求增加,农业物联网相关领域可预见地会出现无线频谱资源紧缺问题。针对基于传统物联网作物表型信息采集系统存在由于节点密集部署导致数据传输过程容易出现频谱竞争、数据拥堵现象以及固定电池网络由于能耗不均衡引起监测周期缩减等诸多问题,本研究建立了一个认知无线传感器网络( CRSN)作物表型信息采集模型,并针对模型提出一种引入边缘计算机制动态频谱能耗均衡( DSEB)事件驱动分簇路由算法。算法包括:( 1)动态频谱感知分簇,采用层次聚类算法结合频谱感知获取可用信道、节点间距离、剩余能量邻居节点度为相似度被监控区域内节点进行聚类分簇并选取簇头,构建分簇拓扑过程各分簇大小均衡性引入奖励惩罚因子,提升网络各分簇平均频谱利用率;( 2)融入边缘计算事件触发数据路由,根据构建分簇拓扑结构,将待检测各区域变化异常表型信息触发事件以簇内汇聚簇间中继交替迭代方式转发至汇聚节点,簇内汇聚包括直传簇内中继,簇间中继包括主网关节点次网关节点 -主网关节点两种情况;( 3)基于频谱变化通信服务质量( QoS)自适应重新分簇:基于主用户行为变化引起可用信道改变,或分簇效果不佳通信服务质量产生干扰,触发 CRSN进行自适应重新分簇。此外,本研究还提出一种新能耗均衡策略去能量消耗中心化(假设 sink为中心),即在网关或簇头节点选取计算式引入与节点到 sink距离成正比权重系数。算法仿真结果表明,与采用 K-medoid分簇能量感知事件驱动分簇 (ERP)路由方案相比,在 CRSN节点数为定值前提下,基于 DSEB分簇路由算法在网络生存期与能效等方面均具有一定改进;在主用户节点数为定值时,所提算法比其它两种算法具有更高频谱利用率。

  • 标签: 认知无线传感器网络 (CRSN) 作物表型信息采集 能耗均衡 分簇路由
  • 简介:[目的/意义]天然牧场下放牧牲畜数量准确检测是规模化养殖场改造升级关键.为满足规模化养殖场大批羊群实现精准实时检测需求,提出一种高精度、易部署小目标检测模型CSD-YOLOv8s(CBAM SP-PFCSPC DSConv-YOLOv8s),实现无人机高空视角下小目标羊只个体实时检测.[方法]首先,使用无人机获取天然草原牧场包含不同背景光照条件下羊群视频数据并与下载部分公开数据集共同构成原始图像数据.通过数据清洗标注整理生成羊群检测数据集.其次,为解决羊群密集相互遮挡造成羊只检测困难问题,基于YOLO(You Only Look Once)v8模型构建具有跨阶段局部连接SPPFCSPC(Spatial Pyramid Pooling Fast-CSPC)模块,提升网络特征提取特征融合能力,增强模型小目标羊只检测性能.在模型Neck部分引入了卷积注意力模块(Convolutional Blo...

  • 标签: 羊只检测YOLOv8小目标SPPFCSPC注意力机制深度可分离卷积
  • 简介:[目的/意义]小麦叶片数是衡量植株生长状况、确定茎蘖动态、调节群体结构重要指标之一.目前大田环境下小麦叶片计数主要依靠人工、耗时耗力,而现有的自动化检测计数方法效率与精度难以满足实际应用需求.为提高小麦叶片数检测准确性,设计了一种复杂大田环境下高效识别小麦叶尖算法.[方法]本研究以手机和田间摄像头获取可见光图像构建了两种典型光照条件下出苗期、分蘖期、越冬期等多个生长期小麦叶片图像数据集.以YOLOv8为基础网络,融合坐标注意力机制降低背景环境干扰,提高模型小麦叶尖轮廓信息提取能力;替换损失函数加快模型收敛速度;增加小目标检测层提高小麦叶尖识别效果,降低漏检率.设计了一种适用于叶尖小目标识别的深度学习网络,通过检测图像叶尖数量从而得出叶片数.[结果与讨论]本研究提出方法小麦叶尖识别精确率mAP...

  • 标签: 小麦叶片叶尖识别叶片计数注意力机制YOLOv8深度学习
  • 作者: 刘守阳 1 2 3* 金时超 5 6 郭庆华 5 6 朱艳 4 Fred Baret1 2 3*
  • 学科: 农业科学 > 农业基础科学
  • 创建时间:2020-06-02
  • 出处:《智慧农业(中英文)》 2020年第1期
  • 机构:1.南京农业大学作物表型组学交叉研究中心,江苏南京 210095; 2.法国农业和环境科学研究院 CAPTE实验室,阿维尼翁 210095,法国; 3.南京农业大学江苏省现代作物生产协同创新中心,江苏南京 210095; 4.南京农业大学国家信息农业工程技术中心 /教育部智慧农业工程研究中心,江苏南京 210095; 5.中国科学院植物研究所植被与环境变化国家重点实验室,北京 100093; 6.中国科学院大学,北京 100049
  • 简介:摘要 : 冠层光截获能力是反映作物品种间差异重要功能性状,高通量表型冠层光截获提高作物改良效率具有重要意义。本研究以小麦为研究目标,利用数字化植物表型平台( D3P)模拟生成了 100种冠层结构不同小麦品种在 5个生育期三维冠层场景,记录了从原始冠层结构中提取绿色叶面积指数( GAI)、平均倾角( AIA)散射光截获率( FIPARdif)信息作为真实值 ,进一步利用上述三维小麦场景开展了虚拟激光雷达( LiDAR)模拟实验,生成了对应三维点云数据。基于模拟点云数据提取了其高度分位数特征( H)绿色分数特征( GF)。最后,利用人工神经网络( ANN)算法分别构建了从不同 LiDAR点云特征( H、 GF H+GF)输入到 FIPARdif、 GAI AIA反演模型。结果表明,对于 GAI、 AIA FIPARdif,预测精度从高到低对应点云特征输入为 GF+H > H > GF。由此可见, H特征提高目标表型特性估算精度起到了重要作用。输入 GF + H特征,在中等测量噪音( 10%)情况下, FIPARdif GAI估算均获得了满意精度, R2分别为 0.95 0.98,而 AIA估算精度( R2=0.20)还有待进一步提升。本研究基于 D3P模拟数据开展,算法实际表现还有待通过田间数据进一步验证。尽管如此,本研究验证了 D3P协助表型算法开发能力,展示了高通量 LiDAR数据在估算田间冠层光截获冠层结构方面的较高潜力。

  • 标签: 冠层光截获 高通量表型 LiDAR 数字化植物表型平台( D3P) 小麦冠层