学科分类
/ 1
2 个结果
  • 简介:马尔科夫预测模型具有"无后效性",即预测未来的销售情况只与当前的销售数据有关,而与过去的销售数据无关.事实上,过去不同的时间点对当前的销售结果会有不同程度的影响.而指数平滑法恰好弥补了马尔科夫预测模型的缺点,它认为最近的过去销售数据,在某种程度上会持续到未来.因此本文利用二次指数平滑系数法优化马尔科夫预测模型,并以某品牌电动车的销售情况为例进行验证,发现优化后预测模型的绝对误差均小于马尔科夫模型的预测结果.由此得出结论,基于二次指数平滑法优化的马尔科夫预测模型具有可行性.

  • 标签: 马尔科夫链 状态转移概率 二次指数平滑法 销售预测
  • 简介:代价敏感普遍应用于解决分类不平衡问题,但代价敏感算法一直没有一个客观的评价标准.本文提出一种针对代价敏感算法的分类精度计算方法,以平衡精度替换总体精度来有效地评定代价敏感算法的分类性能.相比于传统的总体精度,该平衡精度不会忽略小类样本的贡献.通过代价敏感超限学习机对基因表达数据进行分类对比实验,结果表明,平衡精度可以更为客观、合理地表示代价敏感算法的分类性能.

  • 标签: 代价敏感 平衡精度 超限学习机 基因表达数据