简介:本文引入了偶数维欧氏空间的复结构及Witt基,在此基础上讨论了偶数维复Clifford代数中的Dirac旋量空间.由Fock空间的结果我们得到了Dirac旋量空间视为复Clifford代数中极小左理想,最后我们研究了Dirac旋量空间的对偶空间.
简介:研究复射影空间的拟共形平坦Kaehler完备子流形得到局部结构与关于数量曲率的拼挤常数.
简介:讨论Curto-Fialkow所给出的四阶截断复矩问题,即给一个复数序列γ≡γ~((4)):γ_(00),γ_(0)1,γ_(10),γ_(02),γ_(11),γ_(20),γ_(03),γ_(12),γ_(21),γ_(30),γ_(04),γ_(13),γ_(22),γ_(31),γ_(40),其中γ_(00)〉0,γ_(ij)=y_(ji),找到一个正的Borel测度使得γ_(ij)=∫-izz~jdμ(0≤i+j≤4)成立;得到了四阶非奇异截断复矩矩阵M(2)的平坦延拓存在的充分必要条件及在特殊情况下的解,并举例进行了验证.
简介:用基于热力学观点的定量预测三元合金形成非晶成分范围的方法,对Cu-Zr-Ti三元合金系形成非晶的成分范围进行了计算。该方法通过比较晶态固溶体的自由能和相应的非晶态的自由能来确定非晶形成的成份范围,在自由能的计算中,三元系的热力学数据用相应的3个二元系的热力学数据由Toop模型外推得到,二元合金系的形成焓则通过Miedema理论的计算得出。结果表明,理论预测的形成非晶的成分范围与已有的实验结果符合得比较好。
简介:本文给出复微分方程的α-形式解的概念,并用weyl型分数阶积分给出形如t^2z^11(t)-(bt+c)z1(t)+βz(t)=0的复微分方程的一种α-负幂解形式,进而得到这种方程有多项式解的充分必要条件.