简介:TheelectronicpropertiesandtopologicalphasesofThXY(X=Pb,Au,Pt,PdandY=Sb,Bi,Sn)compoundsinthepresenceofspin–orbitcoupling,usingdensityfunctionaltheoryareinvestigated.TheThPtSncompoundisstableintheferromagneticphaseandtheotherThXYcompoundsarestableinnonmagneticphases.Bandstructuresofthesecompoundsintopologicalphases(insulatorormetal)andnormalphaseswithingeneralizedgradientapproximation(GGA)andEngel–Voskogeneralizedgradientapproximation(GGAEV)arecompared.TheThPtSn,ThPtBi,ThPtSb,ThPdBi,andThAuBicompoundshavetopologicalphasesandtheotherThXYcompoundshavenormalphases.Bandinversionstrengthsandtopologicalphasesofthesecompoundsatdifferentpressurearestudied.Itisseenthatthebandinversionstrengthsofthesecompoundsaresensitivetopressureandforeachcompoundasecond-orderpolynomialfittedonthebandinversionstrengths–pressurecurves.
简介:Acompositebeamissymmetricifboththematerialpropertyandsupportaresymmetricwithrespecttothemiddlepoint.Inordertostudythefreevibrationperformanceofthesymmetriccompositebeamswithdifferentcomplexnonsmooth/discontinuousinterfaces,wedevelopanR(x)-orthonormaltheory,whereR(x)isanintegrableflexuralrigidityfunction.TheR(x)-orthonormalbasesinthelinearspaceofboundaryfunctionsareconstructed,ofwhichthesecond-orderderivativesoftheboundaryfunctionsareaskedtobeorthonormalwithrespecttotheweightfunctionR(x).WhenthevibrationmodesofthesymmetriccompositebeamareexpressedintermsoftheR(x)-orthonormalbaseswecanderiveaneigenvalueproblemendowedwithaspecialstructureofthecoefficientmatrixA:=[aij],aij=0ifi+jisodd.Basedonthespecialstructurewecanprovetwonewtheorems,whichindicatethatthecharacteristicequationofAcanbedecomposedintotheproductofthecharacteristicequationsoftwosub-matriceswithdimensionshalflower.Hence,wecansequentiallysolvethenaturalfrequenciesinclosed-formowingtothespecialtyofA.Weusethispowerfulnewtheorytoanalyzethefreevibrationperformanceandthevibrationmodesofsymmetriccompositebeamswiththreedifferentinterfaces.
简介:Auranylcompound,K4UO2(CO3)3hasbeencharacterizedbypowderX-raydiffractionmethod.M.W.=606.46,monoclinic,C2/c(No.15),a=1.0240(7),b=0.9198(4),c=1.2222(12)nm,β=95.12(4)°,V=1.1466(5)nm3,Z=4,Dm=3.468g/cm3,Dc=3.513g/cm,λ(CuKα1)=O.1540598nm,T=298K.ThestructurewassolvedbyheavyatommethodandFouriersynthesis,andrefinedbyfull-matrixleast-squaresmethodtoR=0.1185for275reflections.Theuranium(Ⅵ)atomisinaneight-coordinatedistortedhexagonal-bipyramidalenvironmentwithcreasyfanshape.Thelinearuranylgroupapproachestoperpendiculartotheequatorialplaneinwhichthreecarbonategroupsarechelated.U(Ⅵ)hastwolinearoxygenatomsclosertoit(U-O=0.1767(5)nm)thansixotherneighbours(U-Orangingfrom0.2516to0.2568nm).Thedistancesbetweencarbonatomsanduncoordinatedoxygenatomsare0.122(1)and0.123(1)nm,whicharedistinctlydifferentfromthosebetweencarbonandcoordinatedoxygenatoms(mean0.134(6)nm).Thisfactrevealsthenon-eq-uivalenceofoneoxygenatomtotheothertwoineachcarbonate.InK4UO2(CO3)3,theO-Odis-tancefortheadjacentcarbonategroupsis0.2794(4)nmapproachingtothesumofVanderWaalsradiioftwooxygenatoms.TheK-Odistancesvarybetween0.2667and0.3131nm,andeachanionisimmediatelysurroundedbysixpotassiumions,onlyfourofwhichcanbeconsideredtobelongtothesamestructuralformulaunit,andtheyaresymmetricallylocatedaboveandbelowtheequatorialplane.
简介:以Li_2B_4O_7、LiBO_2和LiF(质量比为45∶10∶5)为混合熔剂,NH_4NO_3为氧化剂,LiBr为脱模剂,熔融制作样片,采用硅质砂岩、石英岩标准样品和配制标准样品作为校准样品,建立了熔融制样-X射线荧光光谱法(XRF)测定硅石中主次量成分(SiO_2、Al_2O_3、TFe_2O_3、MgO、CaO、K_2O、MnO、TiO_2、P_2O_5)的快速分析方法。对样品制备以及分析测试过程中的条件进行了优化,在最优条件下,对标准样品(GBW03112、GBW07835)进行重复测定,相对标准偏差RSD〈2%。同时对3个混合配制的硅石标准样品进行分析,结果与参考值无显著性差异。
简介:
简介:本文首先给出integralfromato+∞f(x)dx收敛≠lim+∞f(x)=0的一更强的例子,然后给出一个与级数收敛的必要条件类似的,integralfromato+∞f(x)dx收敛的必要条件。在许多工科高等数学教材中,广义积分敛散性的判别,一般都在级数中讨论,因而一部分同学和个别教师往往把级数的一些重要性质,直接推广到广义积分integralfromato+∞f(x)dx上。最典型的错误是把级数收敛的必要条件推广到广义积分上,即integralfromato+∞f(x)dx收敛?lim?+∞f(x)=0.这类错误较为普遍。
简介:ThispapershowsthatforΩ∈H1(Sn-1),MarcinkiewiczintegraloperatorμΩisLp(Rn)boundedfor1<p<∞,whichimprovessomeknownresults.
简介:Onassumingthatweaksubstructurehasadynamicswhichissimilartoquantumchromodynamicsbutmuchstronger,weconcludethatunquenchingisindispensableforpredictionsonthespectrumofweak-substructureresonances[1].