简介:Securityofsmarttechnologieslikesmartgridsandcrowdenergysystemscannotrelyonlyontechnicalsolutions,humansplayasignificantroleinfailure,securityculture,informationsecurity,cybersecurity,trustandsharing,andperceptionsandconcern.Thispaperinvestigatessecurityissuesinsmarttechnologiesandtherelatedroleofhumanfailure,whetheritisintentionalorunintentional.Methodsthathelpreducingthisfailurearediscussed.Ahumanorientedframeworkforfailurereductionispresentedinordertoenhancesecurity.IndexTermsCrowdenergy,humanrole,intentionalfailure,security,smartgrids,unintentionalfailure.1.IntroductionManystateofthearttechnologiesaretaggedwiththe'smart'label.Ingeneralunderstandingthismeansinterconnectedness,interactivityand4.0automation,i.e.theapplicationofsensorsandinformationandcommunicationtechnology(SICT)andprocessinganever-changingandexpandingdata/knowledgebase.Fromahigherpointofview'smart'standsbutformorethanjusttheabove-mentionedtechnicalaspects;alsoandinparticularsocial,political,economicandecologicalaspectswillbeaddressed.Thismeansthat'smartmeetschallengestoimprovesustainablewelfare'[1].Inthissense,forexample,thetermsmartgridaddressesnotonlythecommunicativeinterconnectionandcontroloftheentitiesofapowersystem,i.e.technology,butpreciselyalsosustainability,conservationofresources,renewability,andefficiency.Securityhasbeenveryimportantfornewtechnologiesandsystemslikeelectricalgridsandpowerplants.Theseneedtobesecuredcarefullybecauseweaknessesinthesecuritymightleadtopartialdamageandreductionofserviceinseveralways.Inextremecasesdestructioncanhap-
简介:Thispaperpresentsahumandetectionsysteminavision-basedhospitalsurveillanceenvironment.Thesystemiscomposedofthreesubsystems,i.e.backgroundsegmentationsubsystem(BSS),humanfeatureextractionsubsystem(HFES),andhumanrecognitionsubsystem(HRS).ThecodebookbackgroundmodelisappliedintheBSS,thehistogramoforientedgradients(HOG)featuresareusedintheHFES,andthesupportvectormachine(SVM)classificationisemployedintheHRS.Bymeansoftheintegrationofthesesubsystems,thehumandetectioninavision-basedhospitalsurveillanceenvironmentisperformed.Experimentalresultsshowthattheproposedsystemcaneffectivelydetectmostofthepeopleinhospitalsurveillancevideosequences.
简介:
简介:Thispaperpresentsahumanactionrecognitionmethod.Itanalyzesthespatio-temporalgridsalongthedensetrajectoriesandgeneratesthehistogramoforientedgradients(HOG)andhistogramofopticalflow(HOF)todescribetheappearanceandmotionofthehumanobject.Then,HOGcombinedwithHOFisconvertedtobag-of-words(BoWs)bythevocabularytree.Finally,itappliesrandomforesttorecognizethetypeofhumanaction.Intheexperiments,KTHdatabaseandURADLdatabasearetestedfortheperformanceevaluation.Comparingwiththeotherapproaches,weshowthatourapproachhasabetterperformancefortheactionvideoswithhighinter-classandlowinter-classvariabilities.IndexTermsBag-of-words(BoWs),densetrajectories,histogramofopticalflow(HOF),histogramoforientedgradient(HOG),randomforest,vocabularytree.
简介:ToovercometheshortcomingsoftheLeeimageenhancementalgorithmanditsimprovementbasedonthelogarithmicimageprocessing(LIP)model,thispaperproposeswhatwebelievetobeaneffectiveimageenhancementalgorithm.Thisalgorithmintroducesfuzzyentropy,makesfulluseofneighborhoodinformation,fuzzyinformationandhumanvisualcharacteristics.Toenhanceanimage,thispaperfirstcarriesoutthereasonablefuzzy-3partitionofitshistogramintothedarkregion,intermediateregionandbrightregion.Itthenextractsthestatisticalcharacteristicsofthethreeregionsandadaptivelyselectstheparameterαaccordingtothestatisticalcharacteristicsoftheimage’sgray-scalevalues.Italsoaddsausefulnonlineartransform,thusincreasingtheubiquityofthealgorithm.Finally,thecausesforthegray-scalevalueovercorrectionthatoccursinthetraditionalimageenhancementalgorithmsareanalyzedandtheirsolutionsareproposed.Thesimulationresultsshowthatourimageenhancementalgorithmcaneffectivelysuppressthenoiseofanimage,enhanceitscontrastandvisualeffect,sharpenitsedgeandadjustitsdynamicrange.