简介:第一周 (代数初步知识能力训练)一、判断题(16分)1.2a=0是代数式.( )2.x2-4=21是方程.( )3.方程6x-2=0的解是x=3.( )4.(x+y)2的意义是x加y的平方.( )5.如果a2+b2=0,那么a=0,且b=0.( )6.a除以b的商的平方就是ab2.( )7.产值由a元增长8%就达到8%a元.( )8.与x2的差是x的数用代数式表示为x2+x.( )二、填空题(24分)1.圆的半径是R,半圆的周长是.2.梯形的下底为a=2.8米,上底为b=0.8米,面积2.7米2,它的高是.3.加上4能被8整除得a的数是.4.除以2a+3b得商3c的数是.5.一个数与x的和为6
简介:利用Liapunov函数方法,研究了一类一般的非线性系统周期解的存在唯一性与渐近稳定性,得到了存在唯一渐近稳定周期解的充分条件。
简介:把文[1]中结果推广到Reinhardt域D=D(k1k2…kp)包括于C^n(1≤p
简介:在这篇文章里,我们用双线性对构造了一种无证书的环签名方案.并证明它是无条件匿名的,且在随机预言模型中.计算性Diffie-Hellman问题是难解的,我们方案在适应性选择消息攻击下是存在性不可伪造的,它的安全性比在基于身份的公钥密码体制下高.本文首次用多线性形式构造了一个基于身份的广播多重签名方案,它的安全性是基于计算性Diffie-Hellman困难问题.