学科分类
/ 8
156 个结果
  • 简介:引入了FC-度量空间,建立了非紧FC-度量空间中的R-KKM定理.作为应用,研究了非紧FC-度量空间中的变分不等式的解集、相交点集、KyFan截口和极大元集的性质,获得了FC-度量空间中的Fan-Browder不动点定理.

  • 标签: FC-度量空间 R-KKM映射 转移紧开(闭) 变分不等式 不动点
  • 简介:利用特征投影分解(POD)方法建立二维曲型方程的一种基于POD方法的含有很少自由度但具有足够高精度的降阶宦限差分外推迭代格式。给出其基于POD降阶有限差分解的误差估计及基于POD降阶有限差分外推迭代格式的算法实现。用一个数值例子去说明数值计算结果与理论结果相吻合。进一步说明这种基于POD降阶有限差分外推迭代格式对于求解二维曲方程是可行和有效的。

  • 标签: 特征投影分解 降阶有限差分外推迭代格式 双曲方程
  • 简介:研究抽象Banach空间中线性微微分方程的可解性,利用算子半群方法,讨论了在确定时间跳跃或脉冲的线性微分方程解的存在性,表明在一定条件下间断或脉冲方程的解存在唯一.

  • 标签: 线性算子 双半群 间断微分方程 脉冲微分方程 可解性
  • 简介:给出了中心对称三次系统存在一类纽线分界线环的充要条件,并举出此系统至少还存在四个扳限环的(2.2)分布的例子。还举出了中心对称三次系统至少存在六个极限环作(3.3)分布以及五个极限环,其中一个极限环包围作(2.2)分布的四个极限环的例子。

  • 标签: 三次系统 充要条件 极限环 双纽线 中心对称 存在
  • 简介:研究图的邻接矩阵的行列式主要是为了研究图的零特征值的重数,而零特征值的重数在化学分子结构图的稳定性问题中有广泛的应用.本文给出了单圈图及无交圈图的邻接矩阵的行列式分类.

  • 标签: 单圈图 无交双圈图 完美匹配 邻接矩阵 行列式
  • 简介:北京师范大学钱佩玲教师在《从美国教育中心发布的研究发展报告得到的启示》一文中这样写道:当问及美国数学教师关于改革的宗旨时,大多数教师都说他们是知道的,但实际上多数教师只是知道表面的东西,而对于改革的实质,什么是高水平的教学等问题,他们并不清楚,仍然以原来的方法和想法从事教学.作为县优质课的评委,

  • 标签: 改革 数学教师 北京师范大学 优质课 美国 教学
  • 简介:Inthispaper,weinvestigatethecomplexoscillationofthedifferentialequationf''+B1f'+B0f=F1whtereB0,B1,F≠0areordermeromorphicfunctionshavingonlyfinitelymanypolesandtheorderofB1islargerthanthatofB0.Weobtainsomepreciseestimatesoftheorderofgrowthandoftheexponentofconvergenceofthezero-sequenceofsolutionsforthisequation.

  • 标签: 二阶超越系数 非齐次线性微分方程 零点 复合碰撞
  • 简介:讨论了一类非线性曲方程μu—m(‖↓△μ‖^22)△u-γ△μt=β|u|^αμ的初边值问题整体弱解的存在性和指数衰减。

  • 标签: 非线性双曲方程 整体解 指数衰减
  • 简介:通过建立比较定理,利用半序与上下解方法,在Banach空间研究了源弹性梁的—类四阶常微分方程两边值问题的最大解与最小解的存在性.

  • 标签: 四阶常微分方程 边值问题 上下解方法
  • 简介:利用能量方法和单元正交分析方法,构造了特殊的Radau型单元正交展开和张量积分解,简明论证了一阶曲方程组时空间断有限元的收敛性,得到了丰满阶的整体误差估计.数值实验证实了这些理论结果.

  • 标签: 全离散有限元 双曲型方程组 收敛性 时空 一阶 间断有限元
  • 简介:<正>§1引言[1,2]中,我们对两参数马尔科夫过程的三转移函数族{Pijkr(s,t)}的解析性质进行了研究,包括可测性,连续性,可微分性等,以及恒正性及状态对的分解定理等。我们发现,两参数马尔科夫过程与单参数马尔科夫过程虽然有某些相似,但更重要的是本质上的不同。本文对两参数马尔科夫过程的三转移函数族的解析性质作进一步的探讨。

  • 标签: 两参数 三点转移函数族 马尔科夫过程 状态空间 可微性 解析性质
  • 简介:数学课堂教学的主要目标是使学生获取知识、形成技能、训练思维,而课堂提问是实现这一目标的重要手段.提问对于巩固学生知识、启发学生思维,开发学生潜能,培养学生素质都有重要的作用.课堂教学是一个动态的师生交流的过程.在这个过程中教学的时机与学生的兴奋稍纵即逝,需要教师善于捕捉、及时引导,把握好发问的时机.超前的提问,学生不知所措,因无法求答而失去兴趣;滞后的提问,学生毫不费力就得到问题的答案,因缺少思维含量而单调乏味.“不愤不启,不悱不发”,教师要善于捕捉学生的“愤悱”之处,不失时机的用问题开启学生的思维之门.下面,以“正比例函数(第1课时)”为例,浅谈对数学课堂提问设计.

  • 标签: 数学课堂教学 课堂提问 课时 函数 比例 学生素质