简介:在同分布正相协(PA)样本下,对刻度指数族在加权平方损失下获得了刻度参数的Bayes估计,并构造了相应的经验Bayes(E·B)估计,证明了所提出的EB估计是渐近最优的并且获得了E·B估计的收敛速度.最后,给出一个满足主要结果的例子.
简介:在NA相依样本下,研究固定设计非参数回归权函数估计的强相合性和完全收敛性,获得了一些较合理的充分条件,较好地推广和改进了Georgiev在独立情形下所得到的相应结论。
简介:得到了激光等离子能量交换模型研究中的一类反应--扩散方程组的本解的存在性。并通过引进光滑符号函数对解析解的性态进行了估计,为数值方法的误差分析提供了理论依据。
简介:<正>有关于方程问题是初中代数的重点内容,因为它涉及的内容几乎涵盖了初中数学的所有部分,其中富含很多数学思维和方法,技能技巧,而且方法多变,所以利于考查学生的能力和智力,在初中数学竞赛中占有很大的比例.近几年来,初中数学竞赛中常常出现含有参数的且有整数根的一元二次问题,下面选取一些初中竞赛
简介:考虑第一个边界条件为参数的线性函数,第二个边界条件为有理函数的Sturm-Liouville问题.给出问题的特征值、特征函数的渐近式以及特征函数的振荡理论,并给出相应的应用实例.
简介:在“平方损失”下,研究了非指数分布族参数θ的经验Bayes估计,首先利用概率密度函数的核估计,构造了位置参数的经验Bayes(EB)估计量,在适当的条件下获得了它的收敛速度.
简介:记D={(t1,…,tn):(t1,…,tn)∈R+^n且tj=fj(t1,…,tn)为非负单增函数且一阶偏导散均存在(j=k+1,…,n,1≤k
简介:讨论一类抽象Volterra型积分算子,利用此获得含控制参数的抽象动力方程边值问题的解。这种新的求解法我们称为积分算子求解法。
简介:非线性抛物型方程的参数反演在工程技术领域具有重要的应用价值.但由于此类问题的非线性和不适定性,给求解带来了很大困难.本文主要利用重心插值配点法给出了求解一类非线性抛物型方程正问题的高精度数值解,在此基础上,根据某时刻在不同空间点和同一空间点在不同时刻的观测值,利用牛顿迭代正则化算法对其参数进行了反演,讨论了不同初始猜测以及数据随机扰动对该算法的影响,并给出了数值模拟,结果表明本文的方法可行且有效.
简介:学者往往用单一的分布模拟和拟合杂波,如正态分布、瑞利分布和威布尔分布等。然而在实际中,雷达杂波由多种类型的杂波组成,单一分布通常不能精确刻画雷达杂波规律,因此,应用混合分布模型对雷达杂波数据建模更准确。本文考虑用正态分布和瑞利分布的混合分布拟合杂波,并应用矩估计方法和基于EM算法的极大似然估计方法估计模型参数,最后,应用最大后验概率分类准则验证2种估计方法的分类准确率。通过数据模拟,得出极大似然估计的效果和分类准确率都要优于矩估计的估计效果和分类准确率。
简介:本文研究了不等式约束条件下部分线性回归模型的参数估计问题,利用最优化方法和贝叶斯方法,给出了不等式约束条件下部分线性回归模型的最小二乘核估计和最佳贝叶斯估计,并且证明了在一定条件下,带约束条件的最小二乘核估计在均方误差意义下要优于无约束条件的最小二乘核估计。
简介:文[6]讨论了比已有结果更弱的假设条件下,固定时刻一阶脉冲微分系统与Kurzweil广义常微.分方程的关系,本文在此基础之上,建立了此类脉冲微分系统有界变差解对参数的连续依赖性定理.
简介:考虑线性模型Y=Xβ+ε,Y是可观察的n维向量,ε和β是不可观察的n维和p维随机向量;E(β)=Aα,VAR(β)=σ2△≥0;E(ε)=0,VAR(ε)=σ2V≥0;E(εβ')=0;X,A,△,V皆为已知矩阵;α∈Rk,σ>0皆为未知参数,本文首次提出矩阵损失函数,并给出了(Sα,Qβ)的估计(L1Y+α,L2Y+b)在非齐次估计类中可容许的充要条件。
简介:本文讨论了用状态驻留时间来模型化传统的HMM模型。HMM的一个基本假设是它认为语音信号是准平稳的。然而由状态输出yt的HMM模型,并不能很好地表征语音信号中平稳段或平稳段之间的具体特征;由转移弧产生输出的自左向右HMM系统,则对语音特征作更为细致的描述。本文主要讨论在[2]的基础上,对新建模型进行参数估计。
简介:研究含两参数的二阶常微分方程Cauchy问题解的多重层性质,根据不同层次引用不同的伸长变量,分别构造了具有不同量级的边界层校正项,从而证得关于解的一致有效的渐近展开式和有关的余项估计.
简介:本文首先介绍了粒子群算法(PSO)的基本模型及其运行机制;然后,通过粒子迭代位移、轨迹分析和函数上的参数试验,研究了c1,c2参数对粒子行为和算法进化性能的影响,以及对粒子目标识别和方向感的影响;接着,又探讨了PSO中的解的更新空间不断塌缩、粒子的“游荡”与“振荡”、粒子进化与多样性损失等几个确定性现象和随机性搜寻的必要条件;最后,分析了早熟收敛和局部收敛的原因。通过研究,加深了对粒子群算法(PSO)基本模型运行机制的认识和对C1,c2参数特性的了解。
简介:在给出了可靠性生存寿命分析几类重要随机截尾分布函数的基础上,讨论了寿命分布函数参数的最佳有效无偏估计,为解决可靠性生存寿命分析以及通讯工程和电力负载预测中的最佳无偏误差估计问题提供了令人满意的可靠依据和有效算法.
简介:Bhattacharyya和Soejoeti(1980)对步进应力加速寿命试验提出损伤失效率模型(TFR模型).本文针对TFR模型,对两参数Weibull分布,在步进应力加速试验下给出了参数的近似极大似然估计和逆矩估计,并通过Montr-Carlo模拟考察了估计的精度,比较了各估计的优劣.
PA样本下刻度指数族参数的EB估计的收敛速度(英文)
NA相依样本下固定设计非参数回归权函数估计
一类带小参数反应——扩散型方程组的性态估计
含参数的二次方程整数解的求解思路
一类两边界条件含参数的Sturm-Liouville问题
非指数分布数族参数的经验Bayes估计的收敛速度
广义n参数Wiener过程和广义OUPn的导出过程的注记
含控制参数的抽象动力方程连值问题之积分算子求解法
非线性抛物型方程参数反问题数值求解的重心插值配点法
正态分布和瑞利分布混合情形下的参数估计及分类问题
不等式约束条件下部分线性回归模型的参数估计
一类脉冲微分系统有界变差解对参数的连续依赖性
矩阵损失下随机回归系数和参数的非齐次估计的可容许性
基于状态驻留时间下由转移弧产生输出的HMM模型中的参数估计
含两参数的二阶常微分方程Cauchy问题解的多重层性质
基于粒子迭代位移和轨迹的粒子群算法C1、C2参数特性分析
关于可靠性生存寿命分析中几类重要截尾分布函数参数的最佳有效无偏估计
WEIBULL分布步进应力加速寿命试验损伤失效率模型参数的近似极大似然估计和逆矩估计