简介:文章给出了一种真正多维的HLLRiemann解算器.采用AUSM分裂将通量分解成为对流通量和压力通量,其中对流通量的计算采用迎风格式,压力通量的计算采用HLL格式,且将HLL格式的耗散项中的密度差用压力差代替,从而使得格式能够分辨接触间断.为了实现数值格式真正多维的特性,分别计算了网格界面中点和角点上的数值通量,并且采用Simpson公式加权组合中点和角点上的数值通量得到网格界面的数值通量.为了减少重构角点处状态时的模板宽度,计算中采用基于SDWLS梯度的线性重构获得2阶空间精度,而时间离散采用2阶保强稳Runge—Kutta方法.数值实验表明,相比于传统的一维HLL格式,文章的真正多维HLL格式具有能够分辨接触间断,以及更大的时间步长等优点.与其他能够分辨接触间断的格式(例如HLLC格式)不同,真正多维的HLL格式在计算二维问题时不会出现激波不稳定现象.
简介:Lagrange方法中,当流场发生大变形时,跟踪流体运动的Lagrange网格发生扭曲,使计算无法进行下去,此时必须重分网格,把网格修复成较好的形状。另外,网格自适应技术中的重构、合并与加密,以及同一问题不同程序相继计算的连接,并行计算中相邻块边界区域的数据传递等,这些情况都需要利用旧网格上的物理量来确定新网格上的物理量,是一个物理量重映过程。质点重映方法是基于物理上守恒规律的一种离散的物理量守恒映射方法,既可实现分片常数分布的一阶精度重映计算,又可实现分片线性分布的二阶精度重映计算。这种方法可严格保证守恒量的守恒性,且可以实现任意多边形网格以及节点上物理量的守恒重映。但是,基于分片线性分布的二阶精度重映方法,如果新网格的守恒量没有进行保界调整,那么相应的强度量有可能在其局部的限制范围之外,破坏了原网格物理量的单调性。因而,对二阶精度的质点重映方法进行了进一步研究。在分片线性分布的基础上,将基于结构网格的保界算法扩展到非结构网格上,给出了二阶保界的质点守恒重映方法。