简介:讨论了一类与年龄相关的时变种群扩散系统最优生育率控制的非线性问题,证明了最优生育率控制的存在性,并给出了控制为最优的必要条件及其由偏微分方程组和变分不等式组成的最优性组.这些结果可为时变种群扩散系统最优控制问题的实际研究提供理论基础.
简介:研究了一类平面齐五次系统{dx/dt=a50x^t+a41x^4y+a32x^3y^2+a23x^2y^3+a14xy^4+a05y^5,;dy/dt=b50x^5+b41x^4y+b32x^3y^2+b23x^2y^3+b14xy^4+b05y^5当其只有唯一的有限远奇点且具有三对特殊方向时的全局拓扑结构及系数条件.假设系统只有唯一的有限远奇点(O,O),不妨设bs。一0,其特殊方向由示性方程G(口)一0给出,引进poincare变换研究无穷远奇点,再根据定理中的系数条件,列出系统所有可能的无穷远奇点和特殊方向,并判断其类型,由此画出系统具有三对特殊方向时的全局相图.
简介:讨论了具有热储备和两个独立相同部件的平行系统在由常规错误引起失效下的渐进稳定性.首先,利用Banach空间的Volttera算子方程得到了非负动态解的存在唯一性;然后,利用强连续线性算子半群理论证明了系统正的动态解的存在唯一性,而由于初始值不在定义域内,故得到的是mild解.但在t>0时系统古典解存在唯一,所以此时mild解即为古典解.最后,利用线性算子半群稳定性的结果,证明了该动态解在范数意义下收敛到稳态解,进而得到了系统的渐进稳定性.