简介:设M是复流形,具有复(α,β)度量F=αφ(|β|/α),其中α为M上的Hermite度量,β为M上的(1,0)形式。本文得到与F相联系的复非线性联络系数Гiμ^i的表达式,且证明了:若β为M上的全纯(1,0)形式,并且关于α的Hermite联络γij^k(z)平行,则F是M上的复Berwald度量;若α是M上的Kaihler度量,则F是M上的强KahlerFinsler度量.
简介:本文应用解析鞅的一类特殊的不等式给出了具有AUMD性质的复Banach空间的某些特征
简介:本文引入了偶数维欧氏空间的复结构及Witt基,在此基础上讨论了偶数维复Clifford代数中的Dirac旋量空间.由Fock空间的结果我们得到了Dirac旋量空间视为复Clifford代数中极小左理想,最后我们研究了Dirac旋量空间的对偶空间.
简介:研究复射影空间的拟共形平坦Kaehler完备子流形得到局部结构与关于数量曲率的拼挤常数.
简介:讨论Curto-Fialkow所给出的四阶截断复矩问题,即给一个复数序列γ≡γ~((4)):γ_(00),γ_(0)1,γ_(10),γ_(02),γ_(11),γ_(20),γ_(03),γ_(12),γ_(21),γ_(30),γ_(04),γ_(13),γ_(22),γ_(31),γ_(40),其中γ_(00)〉0,γ_(ij)=y_(ji),找到一个正的Borel测度使得γ_(ij)=∫-izz~jdμ(0≤i+j≤4)成立;得到了四阶非奇异截断复矩矩阵M(2)的平坦延拓存在的充分必要条件及在特殊情况下的解,并举例进行了验证.
简介:本文给出复微分方程的α-形式解的概念,并用weyl型分数阶积分给出形如t^2z^11(t)-(bt+c)z1(t)+βz(t)=0的复微分方程的一种α-负幂解形式,进而得到这种方程有多项式解的充分必要条件.
简介:以卷积神经网络为代表的深度学习算法在医学影像分析领域正引起广泛美注,并取得了令人惊叹的进步。为了进一步提高卷积神经网络在计算机辅助筛查肺结节应用的准确率,本文设计了2种改良的深度卷积神经网络,这些改进加快了神经网络的训练速度.有效地防止了算法的过拟合。相比只采用二维卷积核的其他检测模型,该模型能够有效地学习到CT影像三维重建后的图像特征。通过实验,改进的检测模型在LUNAl6数据集上的准确率明显好于其他模型,这种网络结构也可用于医学影像领域中其他三维图像的检测场景。最后,构建了一套适用于远程医疗的“计算机辅助肺癌筛查与诊断系统”,该系统能够自动检测出CT影像中肺结节,并给出结节的良恶性概率评估。通过该系统的应用,可以有效缓解放射科医生超高的劳动强度,提高阀片效率,服务更多患者;减少漏诊和误诊发生的次数,有助于提高肺结节的诊断准确率;从而促进我国肺癌早筛工作的推广。