学科分类
/ 1
3 个结果
  • 简介:摘要 : 针对温室番茄智能化管理需要,研究茎秆、叶片和绿果等 3类相近色目标的多波段图像融合方法,以凸显目标与背景亮度差异,提高目标视觉识别效率。根据其各自在 300~1000 nm范围的反射光谱特征差异,建立了针对其光谱数据分类的 Lasso正则化逻辑回归模型。基于模型的稀疏解特征,确定具有较大权值系数的 450、 600和 900 nm等 3个波段作为最优成像波段,在此基础上构建了温室番茄植株多波段图像在线采集系统。结合最优成像波段下相近色目标图像特征分析,提出了基于 NSGA-II的多波段图像加权融合方法,以增强特定目标与近色背景物体的图像亮度差异。最后通过现场试验对多波段图像融合效果进行评估。结果表明,分别以茎秆、叶片和绿果器官作为识别目标,通过多波段图像融合处理后,目标与背景之间的图像灰度差异绝对差值相应达到单波段图像的 2.02、 8.63和 7.89倍,即被识别目标与其他近色背景的亮度差异显著增强,且背景物的亮度波动得到抑制。本研究结果可以为农业环境近色目标视觉识别相关研究提供参考。

  • 标签: 农业机器人 番茄植株 相近色目标 光谱特征 图像融合 NSGA-II
  • 简介:[目的/意义]天然牧场下放牧牲畜数量的准确检测是规模化养殖场改造升级的关键.为满足规模化养殖场对大批羊群实现精准实时的检测需求,提出一种高精度、易部署的小目标检测模型CSD-YOLOv8s(CBAM SP-PFCSPC DSConv-YOLOv8s),实现无人机高空视角下小目标羊只个体的实时检测.[方法]首先,使用无人机获取天然草原牧场中包含不同背景及光照条件下的羊群视频数据并与下载的部分公开数据集共同构成原始图像数据.通过数据清洗和标注整理生成羊群检测数据集.其次,为解决羊群密集和相互遮挡造成的羊只检测困难问题,基于YOLO(You Only Look Once)v8模型构建具有跨阶段局部连接的SPPFCSPC(Spatial Pyramid Pooling Fast-CSPC)模块,提升网络特征提取和特征融合能力,增强模型对小目标羊只的检测性能.在模型的Neck部分引入了卷积注意力模块(Convolutional Blo...

  • 标签: 羊只检测YOLOv8小目标SPPFCSPC注意力机制深度可分离卷积
  • 简介:[目的/意义]随着奶牛养殖业向规模化、精准化和信息化养殖迅速发展,对奶牛健康的监测和管理需求也日益增加.实时监测奶牛的反刍行为对于第一时间获取奶牛健康的相关信息以及预测奶牛疾病具有至关重要的意义.目前,针对奶牛反刍行为的监测已经提出了多种策略,包括基于视频监控、声音识别、传感器监测等方法,但是这些方法普遍存在实时性不足的问题.为了减轻数据传输的数量与云端计算量,实现对奶牛反刍行为的实时监测,基于边缘计算的思想提出了一种实时对奶牛反刍行为进行监测的方法.[方法]使用自主设计的边缘设备实时地采集并处理奶牛的六轴加速度信号,基于六轴数据提出了基于联邦式与拆分式边缘智能这两种不同的策略对奶牛反刍行为实时识别方法展开研究.在基于联邦式边缘智能的奶牛反刍行为实时识别方法研究中,通过协同注意力机制改进MobileNet v3网络提出了...

  • 标签: 奶牛反刍行为实时监测边缘计算改进MobileNet v3边缘智能模型Bi-LSTM