简介:本文基于文献[1]-[7],研究自共扼高维线性偏微分方程组的Cauchy问题一致适定性的充分条件,导出了一类抛物型方程组,并推广了文[7]的结果。
简介:用辛几何的观点得到了四阶杆振动方程的一族十字架辛格式,对于四阶杆振动方程的稳定条件不一定随时间方向的精度的提高而放宽,而随空间方向精度的提高稳定范围缩小.数值例子表明单辛算法具有良好的数值稳定性.
简介:由系统x^..+f(x,x^.)x^.+g(x)=0的内侧轨线找外侧轨线,再由庞卡莱定理推知系x^..+f(x,x^.)x^.+g(x)=0存在稳定极限环.
高维变系数自共轭线性偏微分方程组Cauchy问题的一致适定性
四阶杆振动方程的一族高稳定的十字架格式
由庞卡莱环域定理导出系统x^..+f(x,x^.)x^.+g(x)=0存在稳定极限环