学科分类
/ 25
500 个结果
  • 简介:变分迭代法被用于解时滞微分方程,通过这种方法我们得到了他们的准确解和数值解。一些例子说明了这种方法的有效性,结果显示这种方法对于解时滞微分方程是一种有力的直接的数学方法。

  • 标签: 娈分迭代 严格变分 时滞微分方程
  • 简介:本文探讨下列二阶非线性微分方程(a(t)x′(t))′+B(t,x(t),x(g1(t)),x′(t),x′(g2(t)))=d(t)解的渐近性。基于解的不同特征性态,给出了解的分类;并且,建立了一些解的渐近性结果。此外,文中还将所获得的结果与文献上同类结果作了比较,说明本文是先前文献的拓展。

  • 标签: 渐近性 振荡 最终单调 Z——类型 S——类型
  • 简介:微分进化算法主要有三个随机参数:种群大小(NP),缩放因子(F),交叉因数(CR).这些参数的取值对EIT图像重建效果的好坏起着重要的作用.但当前微分进化算法参数选择具有随机性,大多数的参数研究是通过标准测试函数进行,没有具体到特定的领域.针对这些问题,文章以头部EIT图像重建为例,在给定目标函数和终止条件的基础上,通过大量的仿真实验,分析了各个参数对图像重构结果的影响,并给出了这些参数的合理选取区间,从而为微分进化算法在EIT图像重建中的应用提供了有效的依据.

  • 标签: 电阻抗成像 微分进化算法 有限元模型 参数设置
  • 简介:文献[1]给出了微分方程f′(x)=af(b/x)的求解方法,其中,a,b为已知任意常数。我们将该方程中的f(b/x)视为指数为1,那么,对应地对f(b/x)的指数为-1的情形,即f′(x)=a/f(b/x)文献[2]给出了具体的解,下面我们对这两类方程的较

  • 标签: 泛函微分方程 任意常数 类方程 可微函数 积分形式 BERNOULLI
  • 简介:解决数学问题的关键在于掌握解题方法,并将解题方法系列化。在中学时学过的不等式的证明一般采用的方法有比较法、综合分析法、重要不等式和数学归纳法等。在高等数学中也会遇到关于不等式的证明问题,若仍用上述方法解决是有困难的。导数是微分学中的重要内容,在学完微分中值定理和导数的应用后,可以利用拉格朗日中值定理和函数的单调性及曲线的凹凸性来解决不等式的证明。

  • 标签: 不等式证明 微分中值定理 应用 拉格朗日中值定理 解题方法 数学归纳法
  • 简介:20世纪70年代初期,出现了在摆脱调性音乐束缚的基础上,体现声音振动原理的微分音频谱音乐。数十年来,随着作曲理念与演奏技术的不断更新与发展,微分音频谱音乐在世界音乐舞台上的地位不断提升,目前已由一个陌生的领域逐渐转变为现代音乐的主流。为了能够更加正确、完整地理解与演绎这种新音乐作品,今天的演奏家、教育者们应对小提琴、中提琴的微分音频谱音乐进行更加深入的研究。

  • 标签: 微分音 频谱音乐 小提琴频谱音乐 中提琴频谱音乐 《序言》
  • 简介:研究了微分脉冲伏安法测定复杂硫酸锌溶液体系中的铊。讨论了伏安图的形成、测定底液和pH值的选择。结果表明:在醋酸介质(pH=4.5±0.2)中,加入适量EDTA、聚乙二醇6000和抗坏血酸的测定体系,采用微分脉冲伏安法可直接测定铊。方法检出限为1.0×10^-8g/L,千倍浓度的8种阳离子共存或单独存在时均不干扰测定。方法用于湿法炼锌中上清、一段净化后液、二段净化后液、电积新液、电积废液中铊的测定,相对标准偏差RSD分别为1.6%,2.5%,3.3%,8.3%,4.9%,铊加标回收率为98.4%~102.2%。方法灵敏、简单、快速,用来测定湿法炼锌各阶段硫酸锌溶液中的铊,结果满意。

  • 标签: 硫酸锌 微分脉冲伏安法 标准加入法
  • 简介:采用带有随机微分方程的非线性混合效应模型对群体药物代谢动力学数据建模,通过在状态方程中引入随机项,将常微分方程扩展到随机微分方程.和常微分方程相比,随机微分方程可解决群体药物代谢动力学模型中相关残差问题.利用贝叶斯估计对非线性混合效应随机微分方程模型参数进行估计,给出群体参数及个体参数的精确后验分布,将Gibbs和Metropolis-Hastings算法相结合,给出参数估计值.通过计算机模拟和实例分析验证了方法的可靠性,结果表明利用非线性混合效应随机微分方程模型及贝叶斯估计方法分析群体药物代谢动力学数据是可行的.

  • 标签: 群体药物代谢动力学 混合效应模型 随机微分方程 贝叶斯分析
  • 简介:运用多值分析、单调算子理论和Schuder不动点定理讨论了一类具有多点边值条件的二阶微分包含问题.作为一个预备性的结果,给出了一类二阶发展方程的解的存在唯一性和对初值的连续依赖性.最后,给出了以上结论在最优化和偏微分方程方面的两个应用.

  • 标签: HILBERT空间 二阶微分方程 算子 极大单调 紧集 等度连续
  • 简介:摘要核电站大修过程中有众多涉及流体净化、气体置换相关的操作,这些操作对于核电站的安全和效益有重大影响。本文通过微分方程探讨这些操作背后的规律,识别出影响这些操作的关键要素,以制定针对性的措施提高效率。

  • 标签: 微分方程 核电 大修 氧化净化
  • 简介:摘要本文是研究标枪投掷运动规律的问题,通过研究影响标枪投掷的因素使达到最大投掷距离,本文对于运动员提高标枪投掷技巧的问题有着很大的帮助,同时本问题的解决还对标枪几何参数设计,标枪比赛场地内的不利因素控制等方面的问题有一定适用性。本文进行了标枪的几何性质研究、标枪理想状态下投掷后飞行的运动规律、在相关影响因数的参数基础上对标枪投掷距离的估算,通过建立微分方程模型,量纲分析模型,理想物理模型等,利用Matlab求解。针对现存问题一,通过Matlab导出标枪内水平各点与其对应直径的散点图,在各分段内进行数据的二次拟合,得到对应的直径与长度关系的方程组。利用积分法求得方程的近似解,之后得出中轴线剖面面积64234.3mm2,用轴线剖面面积与表面积的积分方程关系求得表面积201798mm2,利用形心公式求得标枪的形心位置为x==1346.564mm。针对现存问题二,本文通过对因素进行量纲分析和对数据进行拟合的方法得出函数关系模型,通过Matlab绘制出标枪水平抛出的长度X与有关参数比值的散点图,选出更为接近常数的参数组合方式作为定性分析各要素相互之间的关系,得出结论速度越大,sin2α越大(即2α越接近90度),则水平抛出的距离越大。

  • 标签: 微分方程 量纲分析法 物理模型 刚体 控制变量 数据拟合
  • 简介:讨论Banach空间X上二阶抽象微分方程d^2/(dr^2)u(t,x)=Au(t,x);u(0,x)=x,d/(dt)u(0,x)=0,x∈X的不适定情况,这里A是X上的闭算子;引进空间Y(A,k),即使得二阶抽象微分方程有次弱解v(t,x),且满足esssup{(1+t)^-k|d/(dt)〈v(t,x),x^*〉|:t≥0,x^*∈X^*,|x^*‖≤1}〈+∞的x∈X的全体,及空间H(A,ω),即使得二阶抽象微分方程有次弱解v(t,x),且满足的x∈X的全体.证明了如下结论:Y(A,k)和H(A,ω)均为Banach空间,且Y(A,k)和H(A,ω)均连续嵌入X;A在Y(A,k)上的限制算子A|Y(A,k)生成一个一次积分Cosine算子函数{(t))t≥0,满足limh→0+^-1/h‖C(t+h)-C(t)‖Y(A,k)≤M(1+t)^k,任意t≥0;A在H(A,ω)上的限制算子A|H(A,ω)生成一个一次积分Cosine算子函数{C(t)}t≥0,满足limh→0+^-1/h‖C(t+h)-C(t)‖H(A,ω)≤≤Me^ωt,任意t≥0.

  • 标签: 二阶抽象微分方程 多项式有界解 余弦算子函数
  • 简介:介绍并详述了脉冲泛函微分方程理论研究中的几个问题,包括初值问题的存在性和唯一性、振动性、稳定性与渐近性、周期解及边值问题.

  • 标签: 泛函微分方程 脉冲作用 时滞变元
  • 简介:研究Dirichlet边界条件下的积分-微分算子逆结点问题.证明了积分-微分算子稠定的结点子集能够唯一确定[0,π]上的势函数q(x)和区域Do上的积分扰动核M(x-t)且给出了这个逆结点问题的解的重构算法.

  • 标签: 逆结点问题 积分-微分算子 势函数 积分扰动核
  • 简介:微分方程是高等数学中的重要组成部分,类型众多,较为抽象,主要通过解析解法或数值解法进行求解,难度较大。当前计算机的发展为常微分方程的求解提供了非常有力的工具,其中利用计算机MATLAB软件进行常微分方程求解,有着其他数学软件无可比拟的优势。基于此,旨在深入研究MATLAB在常微分方程求解中的应用。

  • 标签: 常微分方程 数值求解 MATLAB 应用
  • 简介:整数阶常微分方程的古典解法特征根方法对于分数阶常微分方程能不能适用?通过分数阶导数的积分下限取-∞,证明了指数函数f(t)=eπ的Riemann-Liouville型α阶导数为raert从而对Riemann-Liouville型分数阶非齐次常微分方程可以通过特征根方法求得它的通解。分数阶常微分方程在通解中所含的相互独立的任意常数个数与一般传统的整数阶微分方程的规律不同,但却能相容的。

  • 标签: 分数阶导数 Riemann-Liouville型 特征根方法
  • 简介:求解微分方程常见的方法包括有限差分、有限元等.近年来,小波理论迅速发展,用小波方法数值解求解微分方程已越来越引起人们的注意.本文引入小波的基本理论,通过将函数及其各阶导数在小波基上的展开,求解微分方程的数值解.

  • 标签: 小波变换 多分辨分析 导数算子 小波基 微分方程求解