简介:Thispaperpresentsthestabilityofdifferenceapproximationsofanoptimalcontrolproblemforaquasilinearparabolicequationwithcontrolsinthecoefficients,boundaryconditionsandadditionalrestrictions.Theoptimalcontrolproblemhasbeenconveredtooneoftheoptimizationproblemusingapenaltyfunctiontechnique.Thedifferenceapproximationsproblemfortheconsideredproblemisobtained.Theestimationsofstabilityofthesolutionofdifferenceapproximationsproblemareproved.Thestabilityestimationofthesolutionofdifferenceapproximationsproblembythecontrolsisobtained.
简介:牛顿的重复为单个Toeplitz矩阵的组逆的计算被修改。在每次重复,重复矩阵被一个矩阵与一个低排水量等级接近。因为重复矩阵的排水量结构,涉及牛顿的重复的thematrix向量增加能高效地被做。我们证明修改牛顿重复的集中仍然是很快的。数字结果被介绍表明建议方法的快集中。
简介:Iterativetechniquesforsolvingoptimalcontrolsystemsgovernedbyparabolicvariationalinequalitiesarepresented.Thetechniquesweusearebasedonlinearfiniteelementsmethodtoapproximatethestateequationsandnonlinearconjugategradientmethodstosolvethediscreteoptimalcontrolproblem.Convergenceresultsandnumericalexperimentsarepresented.
简介:Inthispaper,westudyvariationaldiscretizationfortheconstrainedoptimalcontrolproblemgovernedbyconvectiondominateddiffusionequations,wherethestateequationisapproximatedbytheedgestabilizationGalerkinmethod.Apriorierrorestimatesarederivedforthestate,theadjointstateandthecontrol.Moreover,residualtypeaposteriorierrorestimatesintheL~2-normareobtained.Finally,twonumericalexperimentsarepresentedtoillustratethetheoreticalresults.
简介:在这份报纸,一个一阶的椭圆形的系统管理的一个抑制分布式的最佳的控制问题被考虑。最少平方的混合有限元素方法,不易于Ladyzhenkaya-Babuska-Brezzi一致性条件,被用于与二个未知州的变量解决椭圆形的系统。由更多样地采用Lagrange,途径,包括一个最初的州的方程的连续、分离的optimality系统,一个伴随状态方程,和为最佳的控制的变化不平等分别地被导出。分离州的方程和分离伴随状态方程产出一个对称、积极的明确的线性代数学的系统。因此,象preconditioned那样的流行解答者结合坡度(PCG),代数学的多格子(AMG)能被用于快速的答案。最佳一个priori错误估计分别地,在H在H1()-norm,并且为流动状态和伴随流动状态为原来的状态和伴随状态在L2()-norm,为控制函数被获得(div;)标准。最后,我们使用一个数字例子验证理论调查结果。[从作者抽象]
简介:Anunstructuredmeshfinitevolumediscretisationmethodforsimulatingdiffusioninanisotropicmediaintwo-dimensionalspaceisdiscussed.Thistechniqueisconsideredasanextensionofthefullyimplicithybridcontrol-volumefinite-elementmethodanditretainsthelocalcontinuityofthefluxatthecontrolvolumefaces.Aleastsquaresfunctionrecon-structiontechniquetogetherwithanewfluxdecompositionstrategyisusedtoobtainanaccuratefluxapproximationatthecontrolvolumeface,ensuringthattheoverallaccuracyofthespatialdiscretisationmaintainssecondorder.Thispaperhighlightsthatthenewtechniquecoincideswiththetraditionalshapefunctiontechniquewhenthecorrectiontermisneglectedandthatitsignificantlyincreasestheaccuracyofthepreviouslinearschemeoncoarsemesheswhenappliedtomediathatexhibitverystrongtoextremeanisotropyratios.Itisconcludedthatthemethodcanbeusedonbothregularandirregularmeshes,andappearsindependentofthemeshquality.