简介:本文研究了一类拟线性系统,引入了反周期边值条件,基于反周期边值条件和数学分析的技巧,建立了新的Lyapunov不等式.
简介:利用广义Virasoro-Toroidal李代数的顶点表示理论研究了广义Baby-TKK李代数的一类顶点表示.
简介:第1课 一元二次方程(精讲式)一、问题提出1.如果一个正方形的面积为64cm2,正方形的边长为xcm,则x2=64,x>0 ①2.已知一个矩形的长比宽多2cm,宽为xcm,矩形的面积为45cm2,问矩形的宽是多少?依题意得:(x+2)x=45 (x>0)整理得:x2+2x-45=0 ②3.在△ABC中∠C=90°,AB=16cm,BC-AC=2cm,求AC的长.若设AC=xcm则由勾股定理AC2+BC2=AB2,即x2+(x+2)2=162整理得:x2+2x-126=0 ③4.某片树林现估计木材储量为a立方米,若每年增长的百分率相同,两年后这片树林木材储量为m立方米,每年平均生长率为x,则得:
简介:本文引入契贝晓夫多项式作为基函数,利用Galerkin方法研究了一类Fredholm-Volterra积分方程的数值解,并进行了数值模拟.结果表明,该方法可行且有效.
简介:希尔伯特在巴黎国际数学家代表大会上发表演讲《数学问题》,并指出数学问题乃是数学前进的指路明灯.之后,问题解决成了国际教育改革的一个热点问题.问题解决的目的是提高学生解决实际问题的能力,而这种能力的培养是通过一系列创造性的思维活动过程来完成,其中就包括了直观思维.直观思维区别于逻辑思维,是数学教学过程中一种重要的思维方法,它是不经过逐步分析,而迅速对问题的答案作出合理猜测、设想和顿悟的一种跃进性思维,它是外界事物在人脑中的反应.数学问题的解决过程中,直观思维是一种主动的、自觉的或自动化的理解运用数学知识的态度和意识,它可以帮助学生用灵活的方法作出数学判断,针对数学问题的解决提出有效的策略.