学科分类
/ 1
6 个结果
  • 简介:为分析一类含间隙结构的振动特性及为保护特定子结构而预留间隙的合理性,根据其振动试验结果,采用假设模态法的思想,将该类带间隙的非线性结构按其子结构的一阶弯曲模态简化为带间隙的单自由度与二自由度弹簧-质量系统,分析了不同激励条件下间隙对系统动力学响应的影响.分析结果表明:此类结构中,间隙具有阻碍振动传递的性质,预留间隙是合理的.

  • 标签: 间隙 假设模态法 固有频率 主共振 超谐共振
  • 简介:为了更快速、高效地确定含润滑铰间间隙对机构动态特性的影响,文中建立了一种新的计算思路.首先,通过理想机构与含间隙机构的运动学模型求出间隙力,进一步把间隙力以主动力的形式带入动力学方程,得到机构的相应动态特性.然后,以含间隙与润滑的曲柄滑块机构为例,基于二状态接触模型与流体润滑模型,对比分析该模型与干摩擦模型,来进一步验证该方法的正确性与可行性.Simulink仿真数据表明,文中建立的模型能有效地抑制机构的振动,动态特性更接近于理想模型,符合实际情况.

  • 标签: 接触模型 铰间间隙 流体润滑 SIMULINK
  • 简介:针对含间隙的两自由度弹簧-质量分段振动系统的非线性模态开展了研究.首先,解析确定了分段保守自治系统发生同相和反相模态运动的初始位移,并采用加权平均方法确定了分段振动系统的模态频率,及其在位形空间模态曲线.然后,采用数值方法求解了系统的非线性模态曲线和模态频率,与本文获得的解析模态频率比较,说明本文的结果较等效模态频率有更好的精度.研究结果表明:在一定的参数条件下,系统的非线性模态个数会高于系统的自由度数目,系统可能发生内共振,而产生多余模态.多余模态运动是两振子同向振动中含有异向振动,说明多余模态是在同相模态运动和反相模态运动之间转换的模态.

  • 标签: 分段线性系统 非线性模态 模态频率 多余模态
  • 简介:为研究含间隙齿轮碰振系统的全局及周期运动的稳定性及分岔条件,建立了齿轮副主动轮的单自由度非线性动力学模型.运用非光滑系统Melnikov理论研究齿轮系统异宿轨道全局分岔条件,然后,求得各分段系统的通解,再将每个切换面作为Poincaré截面,运用组合映射的方法分析系统的周期运动特性.最后通过数值模拟,得到不同参数条件下系统的运动状态和分岔特性,验证了Melnikov方法分析齿轮非光滑系统的有效性.

  • 标签: 齿轮系统 POINCARÉ映射 全局/周期运动 异宿轨道 MELNIKOV方法
  • 简介:本文主要研究了含间隙运动副桁架单胞的等效建模方法.主要考虑了桁架单胞的等效刚度问题以及阻尼问题.首先从间隙铰链开始研究,提出全面的铰链模型;其次提出用位移法将桁架单胞等效成板,即把桁架单胞看成是由梁元组成的钢架结构,运用平面钢架位移法得出桁架单胞的等效刚度矩阵,进而得出结构的整体固有频率和等效后的板的刚度矩阵.最后用有限元软件ANSYS对单胞结构在不同边界条件下进行了模态分析,将在自由边界条件下的固有频率和解析得出的频率做了对比,发现二者有很好的吻合度.结果表明由于间隙运动副的存在,使得桁架单胞结构的刚度降低,柔性增强.

  • 标签: Warren桁架 等效 位移法 铰链 有限元分析
  • 简介:由于一类双悬臂含间隙振动系统具有典型非光滑特性和有明显的非线性,这直接导致了系统发生分又与混沌现象的可能性.为此针对该系统的混沌现象,利用基于能量的开环控制策略,构造有界控制器对混沌行为进行控制,混沌运动可被引导到稳定的目标周期轨道,并对控制的收敛速度进行分析,数值模拟结果表明了该控制策略的有效性与可行性,可为碰振系统的优化设计,振动控制和安全运行提供了理论参考.

  • 标签: 非光滑特性 分叉 混沌 碰振系统