简介:本研究从中等空间分辨率遥感影像(如LandsatTM影像)的地物光谱响应曲线入手,介绍分析了国内外几种常用的建筑用地提取指数构建原理.然后选取LandsatTM影像进行建筑用地提取实验,并用QuickBird和GoogleEarth的同期影像辅以验证.实验得出,比值居民地指数RRI,由于其作者构建时并没有对影像进行辐射校正,从而影响了提取精度和模型适用性;归一化建筑指数NDBI和差值建筑覆盖指数DBI,提取精度相对较高,但是会混有裸土、污染水体等信息;指数型建筑用地指数IBI和增强的指数型建筑用地指数EIBI,提取精度最高,达到92%.虽然EIBI期望改进IBI未能很好抑制裸土信息的问题,但实际上所构建指数并没有较好的去除裸土信息,可能是其权重选择没有普适性,所以建议建筑信息提取优先使用IBI.
简介:地图信息的发布和查询是webGIS最重要的功能之一,地图插件和开发平台的选用以及地图信息的组织,对于满足系统功能要求和提高系统建设效率具有重要作用。经过对现行WebGIS应用情况的分析,进行了系统的设计和数据组织;采用B/S结构,利用.NET技术结合MapServer地图插件进行系统研发和功能实现;开发出洞庭湖区湿地资源信息系统,实现了地图的发布、查询和显示等功能。该系统兼容性好、数据维护方便。利用.NET技术和MapServer平台开发的湿地WebGIS比传统用PHP语言开发的WebGIS执行速度更快,代码的安全性更高,而且其属性库和图形库的分离式设计提高了程序的可扩展性和数据库的稳定性。MapServer湿地信息系统的开发,实现了湿地资源信息的共享,满足了系统设计要求,达到预定目标,为湿地WebGIS开发和应用奠定了基础。
简介:以2016年8月26日Landsat-8OLI影像为数据源,针对特征变量数目可影响分类精度和运算速率问题,采用一种基于特征优选的随机森林模型,提取了黄河口滨海湿地高精度信息。首先,采用Relief(relevantfeatures)-F算法,对全部特征变量进行权重排序,剔除不相关变量;然后,分别采用基于特征优选的随机森林模型、最大似然方法和神经网络分类算法,提取黄河口滨海湿地信息,比较基于特征优选的随机森林模型与其它两种分类方法在滨海湿地信息提取应用中的精度和效率。研究结果表明,基于特征优选的随机森林模型滨海湿地分类效果最佳,总精度为86.39%,Kappa系数为0.81,明显高于最大似然和神经网络分类方法;其中,河流湿地分类精度最高,为95.83%,盐田分类精度最低,主要原因在于盐田与养殖池、水库/坑塘的光谱和几何特征极为相似,易于混淆;但与最大似然分类和神经网络分类方法相比,该方法提取效果明显改善,分类精度分别提高了16.84%和4.44%。本研究结果证明,采用Relief-F算法特征优选的随机森林模型提取滨海湿地信息的方法,具有分类精度高、运算速率快的优势,适用于滨海地区不同类型湿地高精度信息提取。
简介:选取位于大兴安岭林区的南瓮河流域作为研究区,以多时相、中等分辨率的环境卫星影像为数据源,采用面向对象方法,通过多尺度分割、特征提取、决策树建立等步骤,实现湿地信息的快速提取;系统分析了面向对象方法在森林地区湿地信息提取中的有效性。研究表明,在面向对象湿地信息提取过程中,采用不同等级的分割尺度,使分类更具层次性;利用光谱、空间、形状等多种属性特征,通过多时相遥感数据的融合,可以更好地识别复杂多样、界限模糊的湿地景观,其中,草本沼泽的生产者精度达到了91%。结果显示,南瓮河流域内,湿地类型多样,以草本沼泽和灌丛沼泽为主,且其主要分布于河流两侧和中下游宽阔的河谷地带。
简介:以三江平原为研究区,利用多时相的中分辨率成像光谱仪(ModerateResolutionImagingSpectroradiometer,MODIS)影像数据,采用一种基于归一化植被指数(NormalizedDifferenceVegetationIndex,NDVI)时间序列的监督分类方法获取了研究区湿地植被的分布数据.监督分类以NDVI时间序列的波形所反映出的植被物候特征作为分类器,将离散的傅立叶变换应用于NDVI时间序列以减少高频噪声对分类的影响,并运用傅立叶变换后波形幅度和相位的相似性来确定像素的归属类别.根据研究区植被的物候特征的差异,区分出7种地表(沼泽、沼泽化草甸、滩地、水田、旱地、灌木和林地)的植被类型,得到三江平原2005年湿地植被的分布数据.该方法的总体分类精度达到79.67%,Kappa系数为0.7525.研究表明,基于MODIS多时相NDVI数据,采用基于傅立叶组分的相似度分类方法可以客观、经济、快速的提取湿地植被分布数据.