简介:在不要求非线性项f(t,u)取值非负但厂下方有界的情形下讨论了一类P-Laplacian方程两点边值问题的正解存在性问题,利用锥拉伸压缩不动点定理得到了该边值问题的一个正解存在性结果.
简介:讨论了形如∫a^a+h(x-a)βf(x)dx的Gauss-Jacobi求积公式,当积分区间长度趋向于零时,确定了求积公式的余项中介点η的渐近性,并给出了校正公式,比原公式提高了两次代数精度.此外,本文的结论包含了文[3]的结果.
简介:研究每个忙期中第一个顾客被拒绝服务的M/M/1排队模型主算子在左半复平面中的特征值,证明2√λμ-λ-μ是该主算子的几何重数为1的特征值。
简介:我们证明了半空间中一维可压Navier—Stokes方程初边值问题局部解的存在性,证明主要是利用了能量方法.
简介:本文运用Liapunov函数方法,研究了一类四阶非线性微分方程的周期解,得到了存在唯一渐近稳定的周期解的充分条件。
简介:一、填空题(每小题4分,共32分)1方程3y2=24的根为;方程x-x28=0的根为.2方程13x=1-5x2的两根之和是,两根之积是3当t时,分式t2+2t-3|t|-3的值为零4当p时,分式方程xx-3=p2x-3+2会产生增根5应用求根公式计算方程ax2+bx+c=0(a≠0)的二根x1与x2的差的绝对值可得|x1-x2|=.6代数式1999x-1998与1998-1999x的值相等,则x=.7方程(2x-1)2+2(1-2x)-3=0的解为;方程组x+y=11xy=-12的解为8方程x+5x+10=8的解是二、单项选择题(每小题5分,共30分)9下列结论正确
简介:第一类弱奇异核Fredholm积分方程由于奇异及本质的不适定性,给求解带来很大难度.本文首先利用克雷斯变换将方程转化,并对转化后的方程进行高斯一勒让德离散,得到一离散不适定的线性方程组,结合正则化方法对该类问题进行数值求解.最后给出了数值模拟,验证了本文方法的可行性及有效性.