简介:本文对长短波相互作用方程组作行波变换后转化成第一种椭圆方程,利用第一种椭圆方程的解和Bcklund变换,构造了长短波相互作用方程组的无穷序列新解.这里包括了椭圆函数解、双曲函数解、指数函数解和有理函数解.
简介:考虑执行机构性能、传感器空间指向等复杂约束,研究了空间飞行器姿态机动的路径规划问题.建立了姿态机动路径规划模型,并通过使用微分平坦理论将其映射到平坦输出空间,消除微分方程约束的同时降低设计空间维数;给出了平坦输出参数化描述的伪谱法,并运用共形映射、重心插值等技术改善了微分矩阵的病态特性,提高了路径规划的精度.仿真表明:该方法能够较快规划出满足约束的姿态机动路径,对工程应用具有一定参考价值.
简介:研究了地震作用下非线性地基中桩基的3次超谐波共振问题.从地基桩中抽象出力学模型,考虑地基的非线性因素,运用Hamilton变分原理建立了桩基的非线性控制方程.利用Galerkin方法离散上述方程,基于多尺度摄动法研究了地震作用下非线性地基中桩的3次超谐波共振问题.以某嵌岩圆形桩为例,研究了地基土层厚度、剪切波速度及频率比对地震力的影响,数值模拟了非线性地基桩的3次超谐波共振响应,探讨了地震力、地基弹性及非弹性系数对超谐波幅频响应的影响,最后研究桩基产生3次超谐波共振时的时间历程曲线.结果表明,当地震波频率约等于桩基固有频率的1/3时,容易激发桩的3次超谐波共振响应;桩基的3次超谐波共振响应随着地震力、非弹性系数的增大而变得更加显著,随着弹性系数的增大而逐渐变小.
简介:将参数变换法和随机多尺度法结合起来,研究窄带随机噪声激励下强非线性Duffing-Rayleigh振子的响应及稳定性问题.首先借助参数变换思想引入小参数,然后用多尺度法分离了系统的快变量,最后由摄动法和矩方程法得到了系统的稳态响应.并利用Routh-Hurwitz准则得到了稳态解稳定的充要条件.理论分析与数值计算表明:在一定条件下,系统存在两个稳定的稳态解.数值模拟的结果表明:参数变换法结合随机多尺度法研究强非线性随机系统的响应、稳定性等问题是有效的.
简介:建立随机风作用下高速列车动力学参数的可靠性优化设计方法.首先考虑自然风的脉动特性,采用Cooper理论和谐波叠加法模拟随车移动点的脉动风速,给出随机风作用下高速列车非定常气动载荷的计算方法.然后建立高速列车车辆系统动力学模型,计算高速列车的运行安全性,并基于可靠性理论,给出随机风作用下高速列车失效概率的计算方法.在此基础上,以高速列车动力学参数为优化设计变量,以失效概率和轮轴横向力为优化目标,采用多目标遗传算法NSGA—II进行动力学参数的自动寻优,建立随机风作用下高速列车动力学参数的可靠性优化设计模型.经可靠性优化计算,高速列车的失效概率由原始的0.4884降低为0.1406,轮轴横向力由原始的45.13kN降低为43.01kN.通过优化高速列车动力学参数可以显著改善随机风作用下高速列车的运行安全性.
简介:研究外部扰动力矩作用下航天器的混沌姿态运动,引入Deprit正则变量建立系统的Hamilton结构,应用Melnikov方法预测系统产生的稳定流形和不稳定流形的横截相交,得到系统产生混沌姿态运动的条件。研究表明:随着转子转动惯量的增加,引起系统出现混沌姿态运动的激励频率的范围逐渐减小。最后,对相空间轨线的数值模拟表明理论分析的可靠性。
简介:峰放电频率适应性是神经元在信息处理过程中重要的动力学特性之一.当神经系统受到外电场作用时,会对其动力学行为以及神经电信息的产生、传导产生影响.我们基于Leakyintegrate-and-fire(LIF)神经元模型,建立了外电场作用下改进的LIF神经元模型.采用随时间演化的膜电位曲线和峰放电频率曲线,以及随外电场变化的起始峰放电频率曲线和稳态峰放电频率曲线,研究不同强度、频率外电场作用下改进的LIF模型的适应性变化.此外,还利用相邻峰峰间期(ISI)之间的相关性进一步阐明外电场对神经元适应性的影响.
简介:随着航空航天事业的发展,对各种材料性能的要求也越来越高.而蜂窝夹层板在结构和性能上具有许多优点,已在航空航天等领域应用广泛,并在一些重要结构中充当承力部件,但由于其特殊的蜂窝结构,相对于一般的板,在受力时会发生比较大的变形,所以用非线性理论研究蜂窝夹层板结构,并考察不同参数对非线性振动特性的影响,具有重要的理论和实际意义.如今,蜂窝夹层板的几何非线性问题已引起更多学者的关注.在一般均质理论的假设下,一些学者已经研究了各项同性蜂窝夹层板板的非线性动力学特性.研究了一类受面内激励和横向外激励联合作用下的四边简支蜂窝夹层板在主参数共振-1:2内共振时的双Hopf分叉问题.首先利用多尺度法得到系统的平均方程,然后结合分叉理论得到了系统的分叉响应方程,根据对分叉响应方程的分析,得到了六种不同的分叉响应曲线并给出了系统产生双Hopf分叉的条件.利用数值方法得到系统在参数平面的分叉集,通过对不同分叉区域的分析发现,随着参数的变化系统平衡点会分叉为两类周期解,随后周期解会通过广义静态分叉为准周期解,或者通过广义Hopf分叉为3D环面.
简介:利用参数互异的Fitzhugh—Nagumo神经元构建了含耦合时滞的无标度神经元网络模型,通过数值模拟的方法,提出研究参数异质性和耦合时滞影响下神经元网络的共振动力学.结果发现,当耦合项中不含时滞时,适中的参数异质性能够使得神经元网络对外界弱周期信号的响应达到最优,即适中的参数异质性能够诱导神经元网络的共振响应,而且异质性诱导共振对耦合强度具有鲁棒性.更重要的是,耦合时滞对参数异质性作用下神经元网络的共振特性也有着显著性影响.当时滞约为信号周期的整数倍时,神经元网络能够周期性地出现共振现象,即适当的耦合时滞能够诱导神经元网络的多重共振,而且这种现象在异质性参数的适当范围内都能明显出现.
简介:研究了一类参数激励和外激励联合作用下四边简支薄板在1:1内共振下的周期解分叉.首先,根据vonKarman方程推导出四边简支薄板的运动控制方程,利用Galerkin方法得到参数激励和外激励联合作用下的两个自由度的运动方程.然后,通过引入周期变换和相应的Poincar6映射推广了次谐Melnikov方法.最后,对系统进行数值模拟验证了理论的正确性.