简介:针对俯仰运动贮箱中液体的晃动用变分原理建立了一类新的Lagrange函数,以此为基础可以解析方式来研究俯仰运动贮箱中液体的非线性晃动.首先将速度势函数φ在自由液面处作波高函数η的Taylor级数展开,从而导出自由液面运动学和动力学边界条件非线性方程组;然后用谐波平衡法(HBM)假设其解为各次主导谐波叠加的形式,并代入方程组中得到含有未知系数相应多个代数方程式;最后用Broyden法对代数方程组求解.以无挡板开口二维、刚性矩形贮箱为例,研究了液体的大幅晃动,就液体晃动的幅值而言,在一定激励频率范围内,理论计算值与试验结果吻合较好,同时液面波高出现明显的零点漂移现象.
简介:研究了在地基波动影响下非线性粘弹性桩中的混沌运动.假定桩体材料满足Leaderman非线性粘弹性本构关系,得到在轴向载荷作用下满足Winkler条件的地基土波动方程、桩与地基土耦合振动方程;利用Galerkin方法将非线性积分-微分方程简化,并进行了数值计算,揭示了非线性粘弹性桩包括混沌运动在内的动力学行为.
简介:基于Poincaré映射方法对一类两自由度碰撞系统进行研究.经过详细的理论演算得到单碰周期1/n的亚谐周期运动的存在性判据,并能精确地找到亚谐周期运动的初始位置.表明碰振系统的周期运动研究可以通过解析与数值方法的结合去实现.数值模拟表明了亚谐周期运动的存在性判据的正确性,并通过计算Jacobi矩阵的特征值可判断周期运动的稳定性及分岔.
简介:以两对边简支另两对边自由的功能梯度材料板为研究对象,首先建立了考虑材料物性参数与温度相关的、在热/机械载荷共同作用下的几何非线性动力学方程,采用渐进摄动法对系统在1:1内共振-主参数共振-1/2亚谐共振情况下的非线性动力学行为进行了摄动分析,得到系统的四自由度平均方程,并对平均方程进行数值计算,分析外激励对系统非线性动力学行为的影响,发现在一定条件下通过改变外激励可以改变系统的运动形式,产生混沌运动.另外,第二阶模态的幅值远比第一阶模态的幅值大,这应该是两阶模态耦合产生内共振的结果,因此,研究该类结构的非线性动力学行为时不应该只考虑一阶模态,而应考虑到前两阶甚至更多阶模态的相互作用,以便于更好地利用或控制其运动形式.
简介:研究了作大范围旋转运动高度和宽度均沿着梁长度方向变化的锥形悬臂梁动力学问题.采用Bezier插值方法对柔性梁的变形场进行描述,考虑柔性梁的纵向拉伸变形和横向弯曲变形,计人由于横向弯曲变形引起的纵向缩短,即非线性耦合项.运用第二类拉格朗日方程推导出作旋转运动锥形梁的动力学方程,并编制了动力学仿真软件,对作旋转运动锥形梁的频率和动力学响应进行研究.结果表明:不同锥形梁截面的动力学响应和系统频率将有明显差异,因此对实际系统合理建模,将能得到更为精确的结果.