简介:在冲突谈判中,能获知对手偏好是掌握谈判主动性的重要条件。本文基于冲突分析图模型理论构建了一种获取对手偏好的方法。该方法通过深入分析冲突分析图模型中Nash、GMR和SEQ三种稳定性定义,利用反向思维,建立求解对手偏好最少约束条件的数学模型。该方法能让决策者在预知冲突结局的前提下,得到对手的全部偏好信息。以“云南曲靖陆良县铬污染”冲突事件为例,通过对该事件引发的冲突进行建模和偏好分析,在已知冲突最终结局的前提下,运用数学模型,省环保厅可以得到陆良化工企业的所有偏好序,使其在冲突谈判中做到知己知彼,同时也验证了该方法的可行性和有效性。案例分析过程可以从战略层面为谈判中的一方提供参考。
简介:设G(V,E)是简单连通图,T(G)为图G的所有顶点和边构成的集合,并设C是k-色集(k是正整数),若T(G)到C的映射f满足:对任意uv∈E(G),有f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),并且C(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|uv∈E(G)}.那么称f为图G的邻点可区别E-全染色(简记为k-AVDETC),并称χ_(at)~e(G)=min{k|图G有k-邻点可区别E-全染色}为G的邻点可区别E-全色数.图G的中间图M(G)就是在G的每一个边上插入一个新的顶点,再把G上相邻边上的新的顶点相联得到的.探讨了路、圈、扇、星及轮的中间图的邻点可区别E-全染色,并给出了这些中间图的邻点可区别E-全色数.
简介:设G是一个简单图,GiG,G1在G中的度定义为d(Gt)=∑v∈v(c)d(v),其中d(v)为v在G中的度数。本文的主要结果是:设G是n≥2阶几乎无桥的简单连通K3-free图,且G≌k1,n-1、Q1和Q2,若对G中任何同构于四个顶点路的导出子图I有d(I)≥n+2,则G有一个D-闭迹,从而G的线图L(G)是哈密顿图。
简介:图G的广义Randic指标定义为Rα=Rα(G)=∑uv∈E(G)(d(u)d(v))^α,其中d(u)是G的顶点u的度,α是任意实数.本文确定了单圈共轭图的广义Randic指标R-1的严格下界,并刻划了达到最小R-1的极图,这类极图还是化学图.