简介:精确的短期电力负荷预测对电力系统的生产调度和安全稳定运行起到十分重要的作用。为提高短期电力负荷预测模型的精度。提出了一种基于Elman神经网络的改进模型。通过在输出层和隐含层之间扩展一个新的承接层。增强了Elman神经网络的动态信息处理能力。仿真结果表明,改进型Elman神经网络预测模型的预测精度要高于反向传播、支持向量机和常规Elman,同时也说明了建立改进型Elman模型用于短期电力负荷预测是可行的。
简介:摘要 : 对电力的需求是人们日常生活的主要生活需求之一 。在整体电力企业的管理当中,对电网进行有效的管理是中小企业主要运营的重要问题之一。从具体的应用而言,整体电网的运营与管理工作具有的较为丰富的多样性。其中对电力负荷进行有效的预测是整体电网运营工作中的重点工程之一。有效的电力负荷预测工作,能够使相关技术人员对整体电网的运行有效的调整,进而使 整体电网管理拥有更加优质的管理效果。并使整体电力企业的经济效益进一步以能源管理的方式得以提升。文章 对人工神经网络在整体电力负荷预测中的重要作用进行相应的分析,并解释其具体的应用过程,希望能够为电力管理工作提供有效的现实 性参考。