简介:摘要:当前,一些网络学习平台为追求学习资源的数量、用户的访问量,热衷于采用“云服务”模式,过于在意平台上信息资源的聚集,导致学习者迷失在海量的信息资源中,无法获取满足自身个性化需求的有效资源。为了缓解此类问题,个性化推荐技术应运而生。它是在个性化搜索的基础上能够根据学习者的兴趣爱好、行为特性,推荐有可能感兴趣的学习信息资源。这种个性化服务模式,与电商网站上的产品推荐类似,依据用户的已访问行为记录,推荐相关的产品和服务。对于网络学习平台而言,个性化服务是一个相当重要的主题。目前,个性化推荐技术已被广泛应用到电商各类平台中,作为其中较为成功的协同过滤技术,受到了许多电商平台的青睐。网络学习资源平台作为一种全新的、以学习者为主体的学习方式,不仅拥有大量的数字化学习资源,还能将个性化推荐技术应用到其中,大大提高了学习效率,改善了用户体验。
简介:摘要:随着我国进入中国特色社会主义新时代,社会主要矛盾发生转化,人民群众对终身教育和终身学习提出了更高要求。知识在现代社会得到了前所未有的重视,终身教育和终身学习的观点得到普遍认可。员工是企事业单位最活跃的人力资源和人力资本,他们的终身学习是构建全民终身教育体系的重要组成部分,也是企事业单位创造经济效益和社会效益的关键因素。作为员工自愿结合的群团组织,工会肩负教育职能,拥有广泛群众基础和多样化载体,成为推进员工终身学习建设中不可或缺的中坚力量。新时期下工会通过树立终身学习的教育理念,建立分层分类的员工培养制度,加快工会平台化建设,为工会推进员工终身学习提供平台支持和系统保障。
简介:摘要:本研究旨在利用深度学习技术构建一种新型的金融风险管理模型,以提高金融机构在复杂多变的市场环境中的风险管理能力。深度学习作为一种先进的机器学习技术,具有强大的特征学习和数据处理能力,能够自动提取和挖掘金融数据中的深层次信息,为风险管理提供更为准确和全面的决策支持。本研究首先介绍了金融风险管理的重要性和挑战,以及深度学习在风险管理领域的应用现状。然后,详细阐述了基于深度学习的金融风险管理模型的构建过程,包括数据预处理、特征提取、模型训练等关键步骤。在模型构建过程中,本研究采用了多种深度学习算法,如卷积神经网络(CNN)、循环神经网络(RNN)等,以充分利用金融数据的时序性和空间性特征。
简介:摘要:遥感图像目标检测在城市规划、资源调查和灾害监测等领域应用广泛,基于遥感图像的目标检测具有重要研究意义。遥感技术为人们快速、全面了解地表覆盖变化提供了技术支持,在高分辨率遥感技术不断发展的大背景下,大量高品质遥感图像的采集越来越方便。遥感图像是利用遥感技术生成的远距离图像,可以对目标进行有效的处理。目标检测是遥感图像处理的基础任务之一,通过对遥感图像的分析可以分辨出水体、植被等目标,同时遥感影像可以识别更小的目标,如具体的树木、人、交通标志、足球场标志线等等,因此遥感图像目标检测已经成为当前研究的热点问题。遥感设备拍摄图像时由于设备距离目标较远,包含的地面范围大,受到分辨率的限制,待检测目标可能以微小形式显示在遥感图像中,这些检测目标具有尺度小、特征弱等特点,为图像目标的检测工作带来较大难度。