简介:针对数字网络视频监撞系统的索求,研制了一种基于MPEG-4网络视频服务器.采用ATglRM9200芯片作为嵌入式CPU芯片,GO7007SB芯片作为MPEG-4硬件压缩芯片.从系统的硬件设计和软件设计2部分介绍了系统的音视频采集、压缩、存储、传愉及系统拉制等方面设计.实验证明,该系统性能德定、使用灵活,在视频监控、视频会议等各个领城中将会有广泛的应用前景.
简介:矿井瓦斯突出的发生是一个非线性系统在时空演化过程中的灾变行为,影响突出的各个基本因素与突出危险性之间存在复杂的非线性映射关系。对于处理这样的非线性时空演变问题,传统的数学方法是有局限性的。为了更好地预测矿井瓦斯涌出量,将灰色理论引入到预测精度高的遗传神经网络,使灰色理论和遗传神经网络有机结合起来,以神经网络理论为基础,利用遗传算法优化隐含层神经元个数和网络中的连接权值,并用其建立瓦斯涌出量的预测新模型。在实验室测试数据的基础上,建立遗传神经网络训练和检验样本集,并且将检验结果分别与标准BP神经网络的预测结果进行比较。
简介:为了给工业界提供一种快速预测二元混合液体自燃温度的有效途径,将试验所测不同组分及配比的168个二元混合液体的自燃温度作为期望输出,将基于电性拓扑状态指数(ETSI)理论、引入混合ETSI概念而计算出的9种原子类型所对应的混合ETSI作为输入,采用三层BP神经网络技术建立了根据原子类型混合ETSI来预测混合液体自燃温度的BP神经网络模型,并应用改进的Garson算法进行多参数敏感性分析。经模型评价验证及稳定性分析,得到训练集的决定系数R2为0.965,平均绝对误差MAE为11.892K,测试集的交叉验证系数Q2ext为0.923,平均绝对误差MAE为15.530K,发现该模型的预测性能优于已有的多元非线性回归(MNR)模型,表明BP神经网络模型具有较好的拟合能力和预测能力,对烷、醇类混合体系自燃温度的预测精度最佳。
简介:落煤残存瓦斯量的确定是采掘工作面瓦斯涌出量预测的重要环节,它直接影响着采掘工作面瓦斯涌出量预测的精度,并与煤的变质程度、落煤粒度、原始瓦斯含量、暴露时间等影响因素呈非线性关系.人工神经网络具有表示任意非线性关系和学习的能力,是解决复杂非线性、不确定性和时变性问题的新思想和新方法.基于此,作者提出自适应神经网络的落煤残存瓦斯量预测模型,并结合不同矿井落煤残存瓦斯量的实际测定结果进行验证研究.结果表明,自适应调整权值的变步长BP神经网络模型预测精度高,收敛速度快;该预测模型的应用可为采掘工作面瓦斯涌出量的动态预测提供可靠的基础数据,为采掘工作面落煤残存瓦斯量的确定提出了一种全新的方法和思路.
简介:讨论了通过以太网作为通信媒介,基于S3C4510B实现网络型防盗报警器的设计思路和系统结构,设计了用DM9161作为以太网物理层的接口电路以及用松本无线高频板作为探测信息的接收端等硬件电路和相应的软件流程,并配以uClinux操作系统对防盗报警器的各种信息进行有效的管理,达到了家居防盗报警的要求.
简介:在通风网络理论的基础上编制了基于质量描述的隧道网络通风计算程序,并采用模型试验方法对火灾通风网络计算结果进行了验证,证实了网络程序的可靠性。将研编的通风网络计算程序应用于某隧道集中排烟模式下火灾通风排烟技术研究,探讨了排烟量和漏风量对排烟道内和排烟阀处烟气流速的影响规律。结果表明,增加排烟量时,排烟道内和排烟阀处烟气流速呈升高趋势,越靠近排烟风机处,其烟气流速升高趋势越明显。漏风分支风阻的大小较显著地影响着漏风量的大小。减小未开启排烟阀的分支风阻系数,漏风量增大,开启的排烟阀处流量减少,当漏风分支风阻系数减小到10N·s/(kg·m)2时,漏风量超出规范规定值。
简介:介绍了一种基于多媒体处理器DM643的高清晰度网络摄像机硬件设计方案,该方案应用了高分辨率CMOs图像传感器,图像分辨率最高可达三百万像素,采用了以太网供电等技术,便于工程安装,通过嵌入式软件编程,实现了H.264、MPEG4等多种视频编码算法!以及图像分析和识别等功能,可广泛用于各种视频监控和视频分析场合.