简介:首先研究了b-family方程在临界空间中的局部适定性。在参数为s=3/2的临界Besov空间Bs2,r(该空间是Sobolev空间Hs的一种推广形式)中,采用Littlewood-Paley分解方法,得到当初值u0(x)∈B3/22,1为临界正则时,存在最长时间T=T(u0)>0,使得b-family方程有唯一解u(t,x)∈C[0,T];B3/22,1∩C1([0,T];B12,1),且解u(x,t)是连续依赖于初值u0(x)。进一步,在合适的Besov尺度空间E中,运用抽象的Cauchy-Kowalevski定理研究b-family方程解的解析性,证得:当初值是解析的,则该方程解在全空间和局部时间内也是解析的。
简介:利用辅助方程法并借助符号计算软件Maple求解了具有高阶非线性项的广义二维BBM方程,并获得该方程丰富的精确行波解,其中包括三角函数解、双曲函数解、双周期Jacobi椭圆函数解。
简介:讨论Banach空间X上二阶抽象微分方程d^2/(dr^2)u(t,x)=Au(t,x);u(0,x)=x,d/(dt)u(0,x)=0,x∈X的不适定情况,这里A是X上的闭算子;引进空间Y(A,k),即使得二阶抽象微分方程有次弱解v(t,x),且满足esssup{(1+t)^-k|d/(dt)〈v(t,x),x^*〉|:t≥0,x^*∈X^*,|x^*‖≤1}〈+∞的x∈X的全体,及空间H(A,ω),即使得二阶抽象微分方程有次弱解v(t,x),且满足的x∈X的全体.证明了如下结论:Y(A,k)和H(A,ω)均为Banach空间,且Y(A,k)和H(A,ω)均连续嵌入X;A在Y(A,k)上的限制算子A|Y(A,k)生成一个一次积分Cosine算子函数{(t))t≥0,满足limh→0+^-1/h‖C(t+h)-C(t)‖Y(A,k)≤M(1+t)^k,任意t≥0;A在H(A,ω)上的限制算子A|H(A,ω)生成一个一次积分Cosine算子函数{C(t)}t≥0,满足limh→0+^-1/h‖C(t+h)-C(t)‖H(A,ω)≤≤Me^ωt,任意t≥0.
简介:讨论二次非线性系统周期解的存在性一般利用对角系统及指数型二分性通过压缩映射原理来实现,但在具体运用中,可能出现使用压缩映射原理条件要求较严格的现象.使用指数型二分性方法和Schauder不动点定理讨论一类二次周期系数微分方程周期解的存在性并给出具体解.谊方法对条件的要求较低.
简介:本文针对高雷诺数的瞬态Navier-Stokes方程提出一种稳定化有限元法。此方法增加了线性内罚项,其误差估计与粘性系数无关。
简介:本文总结出了几种比较特殊的配平氧化-还原反应方程式的方法,对于提高教学效果,提高学生的技能有一定指导作用。