学科分类
/ 3
53 个结果
  • 简介:研究拓扑向量空间到其共轭空间的伪线性映射和其变分不等式问题,给出伪线性映射的几个等价形式.并对伪线性映射的变分不等式解集的特征进行了刻画。

  • 标签: 单调 次连续 伪线性 正则映射 变分不等式
  • 简介:本文讨论了用状态驻留时间来模型化传统的HMM模型。HMM的一个基本假设是它认为语音信号是准平稳的。然而由状态输出yt的HMM模型,并不能很好地表征语音信号中平稳段或平稳段之间的具体特征;由转移弧产生输出的自左向右HMM系统,则对语音特征作更为细致的描述。本文主要讨论在[2]的基础上,对新建模型进行参数估计。

  • 标签: 状态驻留时间 转移弧 HMM模型 参数估计 语音信号 随机向量
  • 简介:高阶方阵的特征值的求得,需求解一元高次方程,这往往有一定的难度.本文依据矩阵的初等变换的一些良好性质,介绍两种利用矩阵的初等变换化简方阵的特征值的计算的方法.

  • 标签: 特征值 初等变换 初等矩阵
  • 简介:考虑具常数特征拟线性双曲型方程,提出一个新的可化约方程组的方法,证明了具常特征方程组Cauchy问题经典解的整体存在性定理.同时构造一些例子说明一些有趣的现象.

  • 标签: 常数特征 拟线性双曲型方程组 经典解 奇性
  • 简介:用K(s,n)表示完全图Kn的一条边被长为s(s≥2)的路Ps+1替代后得到的图.对n≥7,且n-2为素数,刻画了色等价类【K(s,n)]中图的结构特征,进一步,证明了任意任意n≥7,且n-2为素数,K(2,n),K(3,n)是色唯一的.

  • 标签: n-临界图 色等价 色唯一
  • 简介:定义了上三角等次对角线矩阵和上三角交错次对角线矩阵,讨论了矩阵方程AX-XA=0的对称解与AX+XA=0的反对称解.在此基础上考虑了以下问题的可解性:给定A∈R^n×m,D∈R^m×m,分别求X,Y∈SR^n×m和X,Y∈ASR^m×m,使得XA=YDA.

  • 标签: 对称矩阵 反对称矩阵 广义特征值 反问题
  • 简介:给出了H2(Tn)(n≥2)上Toeplitz算子的特征方程组:T*ziTTzi=T,并在此基础上证明了两个Topelitz算子相乘φ,ψ∈L∞(Tn),TφTψ仍为Toeplitz算子的充要条件:φ对z1,z2,…,zn中某些变量共轭解析,ψ对余下变量解析,且乘积为Tφψ.

  • 标签: TOEPLITZ算子 乘积 特征方程 共轭 充要条件 变量
  • 简介:基于锥上不动点定理,研究了变时滞二阶奇异边值问题,用算子逼近的方法处理奇异性,在较弱的条件下,得到了正解的存在性和特征区间.

  • 标签: 变时滞 边值问题 正解 特征区间
  • 简介:文[3]中确定了单圈图的最大特征值序中的前六个图,本文确定了该序中第七个至第十一个图.

  • 标签: 最大特征值 单圈图
  • 简介:考虑时标上奇异三阶微分方程特征值问题.首先使用Krein-Rutmann定理得到正线性算子的第一特征值,再联合不动点指数定理证明了特征值问题正解的存在性,同时也给出了参数λ的取值区间.

  • 标签: 微分方程 特征值 奇性 时标 正解
  • 简介:在求块Toeplitz矩阵束(Amn,Bmn)特征值的Lanczos过程中,通过对移位块Toepltz矩阵Amn-ρBmn进行基于sine变换的块预处理,从而改进了位移块Toeplitz矩阵的谱分布,加速了Lanczos过程的收敛速度.该块预处理方法能通过快速算法有效快速执行.本文证明了预处理后Lanczos过程收敛迅速,并通过实验证明该算法求解大规模矩阵问题尤其有效.

  • 标签: 分块Toeplitz矩阵 双对称 sine变换 预处理Lanczos方法
  • 简介:设F是一个特征2且至少含有5个元素的域,n≥2是一个正整数.令Mn(F)和Tn(F)分别F上的全矩阵空间和上三角矩阵空间.我们首先刻划从Tn(F)到Mn(F)的保矩阵群逆的所有线性单射,由此从Tn(F)到自身的所有保矩阵群逆的线性双射被刻划.

  • 标签: 特征2的域 线性映射 矩阵的群逆 上三角矩阵
  • 简介:首先,研究了Erdos1合著网络的特征属性,一方面使用节点的度、介数、接近中心性来描述Erdos1合著网络节点重要性,另一方面使用特征向量中心性和本文提出的高阶度参数来描述Erdos1合著网络节点影响力;然后,分别用逼近理想解的排序(TOPSIS算法)算法和主成份分析(PCA)对节点重要性和影响力排序;最后,利用修改的网页排名(PageRank)算法讨论了网络科学原创性论文中最具影响力的论文。

  • 标签: 高阶度 TOPSIS算法 主成份分析 修改的PageRank算法 权威-人气模型
  • 简介:研究带无穷多个部件的,由一个可靠机器,一个不可靠机器与一个缓冲库构成的系统主算子在左半复平面中的特征值,证明2√λη1μη2-λη1-μη2是该主算子的几何重数为1的一个特征值.

  • 标签: C0-半群 特征值 几何重数