简介:基于Schmidt正交化过程获得了一种计算逆矩阵的新方法.对于可逆矩阵A,有Q=MA,其中Q是酉矩阵,M是下三角矩阵.本文直接从Schmidt规范正交化出发,获得下三角矩阵M的计算公式,从而求得逆矩阵A-1=QHM=AHMTM.
简介:运用李群对称方法解决Bretherton方程问题,得到方程的对称约化和群不变解,比如幂级数解,最后得出该问题的守恒率.
简介:通过拟Abelian范畴的局部类构造出函子范畴的局部类,进一步研究函子范畴的局部化范畴与局部化范畴的函子范畴之间的关系.
简介:在Tikhonov正则化方法的基础上将其转化为一类l1极小化问题进行求解,并基于Bregman迭代正则化构建了Bregman迭代算法,实现了l1极小化问题的快速求解.数值实验结果表明,Bregman迭代算法在快速求解算子方程的同时,有着比最小二乘法和Tikhonov正则化方法更高的求解精度.
简介:Tikhonov正则化方法是求解不适定问题最为有效的方法之一,而正则化参数的最优选取是其关键.本文将混沌粒子群优化算法与Tikhonov正则化方法相结合,基于Morozov偏差原理设计粒子群的适应度函数,利用混沌粒子群优化算法的优点,为正则化参数的选取提供了一条有效的途径.数值实验结果表明,本文方法能有效地处理不适定问题,是一种实用有效的方法.