学科分类
/ 1
5 个结果
  • 简介:设D=(y(D),A(D))是一个强连通有向图.弧集SA(D)称为D的k-限制性弧割,如果D-S中至少有两个强连通分支的阶数大于等于后.最小k-限制性弧割的基数称为k-限制性弧连通度,记作Ak(D).k-限制性点连通度Kk(D)可以类似地定义.有k-限制性弧割(k-限制性点割)的有向图称为λk-连通(kk-连通)有向图.本文研究有向图D的限制性弧连通度和其线图L(D)的限制性点连通度的关系,证明了对任意λk-连通有向图D,kk(L(D))≤λk(D),当k=2,3时等式成立;若L(D)是Kk(k-1)连通的,则λk(D)≤Kk(k-1)(L(D));特别地,若D是一个定向图且L(D)是Kk(k-1)/2.连通的,贝0Ak(D)≤Kk(k-1),2(L(D)).

  • 标签: 有向线图 限制性连通度
  • 简介:设G是一个简单图,GiG,G1在G中的度定义为d(Gt)=∑v∈v(c)d(v),其中d(v)为v在G中的度数。本文的主要结果是:设G是n≥2阶几乎无桥的简单连通K3-free图,且G≌k1,n-1、Q1和Q2,若对G中任何同构于四个顶点路的导出子图I有d(I)≥n+2,则G有一个D-闭迹,从而G的线图L(G)是哈密顿图。

  • 标签: 线图 D-闭迹几乎元桥哈密顿图 K3-free
  • 简介:如果图G有一个生成子图使得这个生成子图的每一个分支都是3个点的路,则称G有P3-因子.本文证明了对任何一个2-边连通图G,只要G的边数能被3整除,则G的线图就有P3-因子。

  • 标签: P3-因子 线图
  • 简介:本文证明了当(a,b)不属于{(1,8),(2,4),(3,6),(4,4),(2s^2-s,2s^2+s))时,L^m(Ka,b)以谱为特征,其中a≤b,s≥2.

  • 标签: 线图 二部半正则图 邻接矩阵
  • 简介:给出了一类特殊的广义deBruijn有向图的支撑树与欧环游的数目的简洁表示式,并得到了广义deBruijn有向叠线图的支撑树与欧拉环境数目的计算公式。

  • 标签: 广义de-Bruijn有向图 叠线图 支撑树 欧拉环游