简介:提出了点集Bézier曲线的概念,给出了点集Bézier曲线的性质及细分算法.按照点集算术的定义,当点集是长方形闭域或圆盘时,点集Bézier曲线就是区间Bézier曲线或圆盘Bézier曲线,因此,点集Bézier曲线是对区间Bézier曲线和圆盘Bézier曲线的推广.
简介:论证了零级υ值代数体函数w(z)在满足某些条件下T方向的存在性,同时给出了最大型Borel方向与T方向之间的关系.
简介:给出赋Orlicz范数的Musielak-Orlicz函数空间中光滑点、光滑性、强(很)光滑点和强(很)光滑性的充分必要条件.
简介:Inthispaper,westudytheglobalasymptotiestabilityofthezerosolutionofageneralizedLienard'ssystem{x^.=φ(y)y^.=-f(x)φ(y)-g(x)byconstructinganewLiapunovfunction.Thesufficientandneoessaryconditionsforglobalasymptoticstabilityundergivenconditionsareobtained.
简介:假设S(X)是Banach空间X的单位球面,作者引进了四个新的几何参数:Jε(X)=sup{βε(x),x∈S(X)},jε(X)=inf{βε(x),x∈S(X)},Gε(X)=sup{αε(x),x∈S(X)},gε(X)=inf{αε(x),x∈S(S)},其中≤ε≤1,βε(x)=sup{min{‖x+εy‖,‖x-εy‖,y∈S(X)}},αε(x)=inf{max{‖x+εy‖,‖x-εy‖,y∈S(X)}},讨论了这些参数的性质,本文主要结果是:如果主要结果是:如果有一个ε,0≤ε≤1,使得Jε(X)<1+ε/2或gε(X)>1+ε/3,那末X有一至正规结构。