简介:给出赋Orlicz范数的Musielak-Orlicz函数空间中光滑点、光滑性、强(很)光滑点和强(很)光滑性的充分必要条件.
简介:设X是复Banch空间,M(t,u)是以t为参数的满足某些通常条件的Φ-函数.我们证明了;(i)Musielak-Orlicz空间L_M(X)具有解析UMD性质当且仅当X具有;(ii)L_M(X)具有解析RN性质当且仅当X具有.
简介:对赋Luxember范数或Orlicz范数的Orlicz型序列空间,诸如古典的、广义的及参数式的,本文总结、补充、比较列出了暴露点及暴露性的充分必要刻画,并对以往结果中的错误进行了修正,从而在序列空间方面系统地完成了有关暴露性的刻画。
简介:讨论了复平面内单位圆盘上的加权Orlicz-Bergman空间以及这些空间上的复合算子,给出了复合算子的范数估计及可逆性条件.
简介:文章运用Orlicz空间和Lebesgue-Bochner空间理论及技巧,给出了Orlicz-Bochner空间在赋以Luxemburg范数时,球面上的点为各向一致凸点的充分性条件和空间具有各向一致凸性质的充要条件。
简介:本文研究了一种修正的Shepard—Lagrange型插值算子在Orlicz空间内的逼近性质,证明了它在Orlicz空间内的有界性,利用光滑模、Hardy—Littlewood极大函数、N函数的凸性及Jensen不等式给出了该算子在Orlicz空间内的逼近度估计.
简介:以鞅变换为工具,刻画了Orlicz-Hardy鞅空间之间的相互关系.即采用构造性方法,证明了如下结论:(1)设Φ_1是凹函数,其下指标q_(Φ_1)〉0,Φ_2是凸函数,其上指标p_(Φ_2)〈∞.则鞅f∈H_(Φ_1)~s,当且仅当f是H_(Φ_2)~s中某个鞅g的鞅变换;(2)设Φ是凹函数,其下指标q_Φ〉0.则鞅f∈H_Φ~s,当且仅当f是BMO_2中某个鞅g的鞅变换.
简介:本文利用Hardy-Littlewood极大函数、光滑模和K-泛函之间的等价关系、N函数的凸性、算子矩量估计及Jensen不等式等工具,研究了由陈文忠定义的LupasBaskakov型算子在Orlicz空间内的逼近性质,给出并证明了该算子在Orlicz空间内逼近的强型逆定理.由于Orlicz空间比连续函数空间和L_p空间涵盖更广泛,其拓扑结构也比L_p空间复杂得多,所以本文的结果具有一定的拓展意义.
简介:通过对可预报向量值弱Hardy-Orlicz鞅空间wPB^Φ建立弱原子鞅分解,并借助广义的Davis鞅分解定理,证明了有限鞅在向量值弱Hardy-Orlicz鞅空间wHB^Φ中稠密的充分必要条件是Banach空间B具有Radon-Nikodym性质,所得结果推广了已有文献中的相应结论.