学科分类
/ 23
452 个结果
  • 简介:系统研究了具有急性和慢性两个阶段的MSIS流行模型.由两节构成,第1节建立和研究了具有急慢性阶段的MSIS流行模型;第2节在第1节的基础上建立和研究了具有慢性病病程的MSIS流行模型.第1节的模型是四个常微分方程构成的方程组.第2节的模型既含有常微分方程,又含有偏微分方程.运用微分方程和积分方程中的理论和方法,得到了这两个模型再生数()0的表达式.证明了当()0<1时,无病平衡态是全局渐近稳定性,给出了各模型地方平衡态的存在和稳定性条件.

  • 标签: 流行病模型 病程结构 再生数 平衡点 稳定性 急慢性阶段
  • 简介:本文首先对家蚕微粒子分组检验问题进行了剖析;然后,提出了M个有毒集团中含有二只蛾的集团数的概率模型,其模型为二项分布B(M,0.07);最后根据集团检验的结果,得到了蛾数的估计值,其值为(1.07M+0.07)。

  • 标签: 分组检验 微粒子病 概率
  • 简介:做一做:4个人一组做掷硬币(或掷骰子)等游戏,让一名同学任意抛出一个硬币,落地后一定是正面吗?多做几次试试看,落地后每次一定是正面吗?做实验试一试,并与其他同学交流一下实验的结果,相信你会有所发现.

  • 标签: 第7章 《可能性》 北师大版 初一 数学 课程改革
  • 简介:本文构造出一种迭代求解线性方程组的向前向后TOR方法——FBTOR方法,它包含了熟知的Jacobi,Gauss—Seidel、SOR、AOR、SAOR及FBAOR方法,并讨论了系数阵为对称正定律、不可约H—阵、正定阵、广义正定阵及稳定阵时FBTOR方法的收敛

  • 标签: 收敛性 方法 线性方程组 广义正定阵 对称正定 迭代求解
  • 简介:本文讨论了两粒子系统中量子态的可分与关联,分别得到了纯态与混合态可分的充要条件,及其元素必须满足的条件.用量子态元素之间的关系,给出了乘积态的刻画.此外,通过元素刻画了量子态的左(右)经典关联与经典关联

  • 标签: 量子态 可分性 关联性 经典关联 量子关联
  • 简介:本文根据ThierryBourbieetal建立的测定致密岩心的渗透率的装置,交换相应的数学模型中的边界条件和附加条件位置,得到了相应正问题的解析解.尔后,运用偏微分方程反问题中的系数反演方法,构造出了反演渗透率的关系式,在此基础上,运用不动点定理讨论了解析反演解的存在与唯一.反演的结果表明:只要在L端持续测量t1时间间隔,则所给的附加条件可以唯一确定渗透率.

  • 标签: 渗透率 数学模型 边界条件 反问题 解析反演 不动点定理
  • 简介:建立和研究了具有染病年龄结构和重复感染的两菌株SIJR流行模型,得到了与两菌株相对应的基本再生数的表达式,给出了无病平衡点,各菌株占优平衡点以及共存平衡点的存在和稳定性条件.最后详细讨论了该模型的特殊情形一重复感染率为常数的情形.

  • 标签: 重复感染 染病年龄 再生数 SIJR流行病模型 稳定性
  • 简介:令Vn=span{1,2,…,n},设函数f∈Lp[E,μ],1≤p<∞,在点p处定义一个最佳Lp逼近算子τ∫(p)。记Nf(p)=∥f-τ∫(p)∥p=inf/Q∈Vn∥f-Q∥po本文证明了Nf(p)/[μ(E)]l/p是p的单调增加且有界的函数。如果f∈L∞[E,μ],则存在τ∫(∞)∈Vn,使得∥f-τ∫(∞)∥∞=inf/Q∈Vn∥f-Q∥∞,并且给出了最佳逼近值。

  • 标签: 最佳逼近 证明方法 零测度 有限维线性空间 可测集 HOLDER
  • 简介:讨论弱耗散梁方程的能量衰退.通过构造辅助泛函的方法克服了一般的证明能量估计的方法在证明过程中所碰到困难,从而证明了如果记忆核是指数衰退的,那么能量也是指数衰退的.

  • 标签: 弱耗散梁方程 渐近性 记忆核 吸收集 非线性偏微分
  • 简介:在数学解题教学中有许多关于周期的命题,由于相关周期性命题在表现形式上有较强的隐蔽,较高的抽象、综合,因此解决问题的方法不易掌握.本文就函数的周期做一些讨论,由函数的周期,解决相关的问题.

  • 标签: 周期性 函数 应用 数学解题教学 隐蔽性 抽象性
  • 简介:对赋Luxember范数或Orlicz范数的Orlicz型序列空间,诸如古典的、广义的及参数式的,本文总结、补充、比较列出了暴露点及暴露的充分必要刻画,并对以往结果中的错误进行了修正,从而在序列空间方面系统地完成了有关暴露的刻画。

  • 标签: N-函数 Orlicz-函数 Musielak-Orlicz-函数 序列空间 Luxember范数 ORLICZ范数