简介:格蕴涵代数中的滤子是格值逻辑推理中的一类重要代数结构.本文给出了利用格蕴涵代数的蕴涵运算表找出格蕴涵代数中所有滤子的方法.并举例说明该方法的有效性、可行性.
简介:Inthispaper,weproposeaparallelGauss-Seideltypeiterativemethodforsolvingthelarge-scalesystemofnonlinearalgebraicequationsAφ(x)+Bψ(x)=b,whichisanasynchronousvariantofthesynchronousparallelnonlinearGauus-SeideltypemethodgivenbyR.E.White.Withalmostthesamebutsomewhatmorerelaxedconstrainteonthemultiplesplittings,weprovetheconvergenceandestimatetheconvergencerateofthenewmethod.
简介:在Tikhonov正则化方法的基础上将其转化为一类l1极小化问题进行求解,并基于Bregman迭代正则化构建了Bregman迭代算法,实现了l1极小化问题的快速求解.数值实验结果表明,Bregman迭代算法在快速求解算子方程的同时,有着比最小二乘法和Tikhonov正则化方法更高的求解精度.
简介:Tikhonov正则化方法是求解不适定问题最为有效的方法之一,而正则化参数的最优选取是其关键.本文将混沌粒子群优化算法与Tikhonov正则化方法相结合,基于Morozov偏差原理设计粒子群的适应度函数,利用混沌粒子群优化算法的优点,为正则化参数的选取提供了一条有效的途径.数值实验结果表明,本文方法能有效地处理不适定问题,是一种实用有效的方法.