简介:让是四元数海森堡组,并且让P是仿射的自守组。我们上经由P的单一的代表在四元数海森堡组上开发连续小浪变换的理论。光线的小浪的一个班被构造。反的小浪变换被使用光线的小浪简化。然后,我们上调查氡变换。一个Semyanistyi-Lizorkin空格被介绍,在哪个上氡变换是bijection。我们由欧几里德几何学的Fourier变换和组Fourier变换在两个上处理氡变换。这二个处理是实质上相等的。如果小浪是光滑的,我们也由使用小浪给一个倒置公式,它不要求功能的光滑。另外,我们获得上与亚拉普拉斯算符联系的氡变换的一个倒置公式。
简介:TheauthorsestablishsomeuniformestimatesforthedistancetohalfwaypointsofminimalgeodesicsintermsofthedistantcetoendpointsonsometypesofRiemannianmanifolds,andthenprovesometheoremsaboutthefinitegenerationoffundamentalgroupofRiemannianmanifoldwithnonnegativeRiccicurvature,whichsupportthefamousMilnorconjecture.
简介:LetAbeaunitalC*-algebra,n∈N∪{∞}.Itisprovedthattheisomorphism△n:Un0(A)/DUn0(A)→AffT(A)/△n0(π1(Un0(A)))isisometricforsomesuitabledistances.Asanapplication,theauthorhasthesplitexactsequence0→AffT(A)/△n0(π1(Un0(A)))iA→Un(A)/DUn(A)πA→Un(A)/Un0(A)→0withiAcontractive(andisometricifn=∞)undercertainconditionofA.
简介:Inthispaper,wegivetheholomorphicautomorphismgroupofthehigher-dimensionalgeneralizationofThullendomain.
简介:TheauthorsdefinetheGaussmapofsurfacesinthethree-dimensionalHeisenberggroupandgivearepresentationformulaforsurfacesofprescribedmeancurvature.Furthermore,asecondorderpartialdifferentialequationfortheGaussmapisobtained,anditisshownthatthisequationisthecompleteintegrabilityconditionoftherepresentation.
简介:Inthispaper,someexistenceresultsforthefourthordernonlinearsubellipticequationsontheHesisenberggrouparegivenbymeansofvarationalmethods.
简介:我们使用Ringel大厅代数学途径为在Xi被描绘的类型B2的量组学习正规基础元素[12]。然而,我们的途径在那里简化几计算。
简介:左R-模M称为Eω-内射模,如果对环R中任意的ω阶Euclid理想I来说,任何R-模同态能够拓展为R-模同态。左R-模M称为Eω-投射模,若对环R中任意的ω阶Euclid理想I和任何R-模同态f∈HomR(M,R/I),存在R-模同态g∈HomR(M,R)使得f=πg,其中π是自然同态。本文证明P和Q均是Eω-投射模当且仅当PQ是Eω-投射模。进而,又证明了每一个左R-模是Eω-投射的当且仅当每一个左R-模是Eω-内射。
简介:Inthispaper,weinvestigateahorizontalLaplacianversionoftheclampedplateproblemonCarnotgroupsandobtainsomeuniversalinequalities.Furthermore,forthelowerordereigenvaluesofthiseigenvalueproblemoncarnotgroups,wealsogivesomeuniversalinequalities.
简介:LetKn×nbethesetofalln×nmatricesandKrn×ntheset{A∈Kn×n|rankA=r}onaskewfieldK.Zhuang[1]denotesbyA#thegroupinverseofA∈Kn×nwhichisthesolu-tionoftheeuqations:AXA=A,XAX=X,AX=AX.
简介:LetGbeanonabelianfinitegroup.ThenIrr(G/G′)isanabeliangroupunderthemultiplicationofcharactersandactsonthesetofnon-linearirreduciblecharactersofGviathemultiplicationofcharacters.Thepurposeofthispaperistoestablishsomefactsabouttheactionoflinearcharactergrouponnon-linearirreduciblecharactersanddeterminethestructuresofgroupsGforwhicheitheralltheorbitkernelsaretrivialorthenumberoforbitsisatmosttwo.Usingtheestablishedresultsonthisaction,itisveryeasytoclassifygroupsGhavingatmostthreenomlinearirreduciblecharacters.