简介:摘要 : 目前,针对蜂群发生崩溃式消失的现象还缺乏有效的观测和分析手段。本研究在分析蜂群行为与检测特征的基础上,设计了一种基于物联网技术的蜂群多特征长期监测系统。该系统采用太阳能供电,融合了多种传感器,能够检测蜂群的多个特征(蜂箱内部的温度、湿度、蜂群重量、声音和蜜蜂的进出量),并利用无线数据同步传输技术将这些数据上传到远程云服务器中。基于该系统,本研究还进行了针对意大利蜜蜂从 2018年秋季到 2020年春季为期 235天的长期连续监测试验,记录了蜂群在秋衰期、越冬期和春繁期蜂箱内部温度、湿度、蜂群重量、声音和进出量的逐小时的细致变化。试验结果表明,在此期间,蜂箱内的平均温度呈现从 25℃下降到 -5℃再回升至 15℃的抛物线变化,相应的进出巢次数也由大约 8万次 /天减少至 0次 /天再增加至 5万次 /天。在越冬期中,蜂群的重量呈现出大约 25 g/天的线性下降趋势,同时蜂箱内也更为安静,声音的频率集中于 0~64 Hz。由此表明,在不干扰蜂群的情况下,该监测系统获得的特征数据能够有效地揭示蜂群的日常活动和趋势变化,可用来研究蜂群的行为生物学、探索崩溃式的蜂群消失成因以及发展精确化蜜蜂养殖业。
简介:[目的/意义]大规模肉羊畜舍人工消毒存在费时费力、覆盖不全和消毒不彻底的问题,为保持畜舍卫生和肉羊健康,本研究提出一种羊场自动导航喷药机器人.[方法]从硬件、语义分割模型和控制算法3个方面设计了自动导航喷药机器人.硬件部分包括履带底盘、摄像头和折叠式喷药装置.语义分割模型部分通过引入压缩通道网络注意力(Squeeze-and-Excitation Network,SENet)和基于场景改进的十字交叉注意力(Criss-Cross Attention,CCA)模块,提出一种双注意力ENet语义分割模型(Double Attention ENet,DAENet).在控制算法方面,针对机器人在面对岔路时无法控制行进方向的问题,利用模拟真实道路的方法,在羊舍外的道路上绘出车道线,提出了道路中心点识别和车道线中心点识别两种算法来计算机器人行进过程中的导航点.为了实现上述两种算法,使用了两台摄像头并设计了摄像头切换算.
简介:摘要 : 叶片湿润时间( LWD)是植物病害模型的重要输入变量之一,它与许多叶部病原菌的侵染有关,影响病原侵染和发育速率。为了准确地预测日光温室黄瓜病害的发生时间和方位,本研究于 2019年 3月和 9月在北京两个不同类型日光温室内按照棋盘格法设置了 9个采样点部署温湿光传感器和目测叶片湿润时间,每隔 1 h采集一次温度、湿度、辐射和叶片湿润数据进行定量估算分析。分析结果表明: BP神经网络模型在两个温室的试验条件下获得了相似的准确度( ACC为 0.90和 0.92),比相对湿度经验模型估算叶片湿润时间的准确度( ACC为 0.82和 0.84)更高,平均绝对误差 MAE分别为 1.81和 1.61 h,均方根误差 RSME分别为 2.10和 1.87,决定系数 R2分别为 0.87和 0.85;在晴天和多云天气条件下,叶片湿润时间的空间分布总体规律是南部>中部>北部,南面是叶片湿润平均时间( 12.17 h/d)最长的区域;由东向西方向上,叶片湿润时间的空间分布总体规律是东部>西部>中部,中部是叶片湿润平均时间( 4.83 h/d)最短的区域;雨天的叶片湿润平均时间比晴天和多云长,春季和秋季分别为 17.15和 17.41 h/d。这些变化和差异对温室黄瓜种群水平方向的叶片湿润时间分布具有重要影响,与大多数高湿性黄瓜病害的发生规律密切相关。本研究为预测温室黄瓜病害分布提供了有价值的参考,对控制病害流行和减少农药使用具有重要意义,提出的区域化分析温室内叶片湿润时间的方法,可以为模拟日光温室叶片湿润时间的空间分布提供参考。