简介:探讨了漂浮基空间机械臂系统在轨捕获参数未知目标卫星后组合体航天器的镇定控制问题.首先在耦合空间机械臂系统捕获目标卫星操作过程动量、冲量的传递的基础上,建立了适用于漂浮基空间机械臂系统在轨捕获漂浮卫星控制系统设计的组合体航天器数学模型.利用该模型,设计了一种基于模糊高斯基神经网络的非奇异Terminal滑模控制算法.提出的控制算法不仅不要求系统动力学方程关于惯性参数呈线性函数关系,而且也不需要预知系统惯性参数;由于利用神经网络的自学习能力修正模糊控制的控制规则和隶属函数,这样在系统参数识别中,模糊神经网络可减少模糊规则数,更适应于空间机械臂系统在轨捕获的实际应用.最后通过仿真试验对比结果验证了所提出的控制算法的有效性.
简介:蜂窝夹层结构因其良好的力学特性,在众多工程领域具有非常广泛的应用.本文建立了悬臂边界条件下,蜂窝夹层板的动力学模型并研究其非线性动力学行为.选取文献中更加接近实体有限元解的等效弹性参数公式对蜂窝芯层进行等效简化,得到六角形蜂窝芯的等效弹性参数.基于Reddy高阶剪切变形理论,应用Hamilton原理建立悬臂式蜂窝夹层板在受到面内激励和横向激励联合作用下的偏微分运动方程.然后利用Galerkin方法得到两自由度非自治常微分形式运动方程.在此基础上,通过对悬臂式蜂窝夹层板进行数值模拟分析系统的非线性动力学.结果表明面内激励和横向激励对系统的动力学特性有着重要影响,在不同激励作用下系统会出现周期运动、概周期运动以及混沌运动等复杂的非线性动力学响应.
简介:研究了非线性随机动力系统所对应的Fokker-Planck-kolmogorov(FPK)方程.讨论了微分方程的可朗克(Crank)一尼考尔逊(Nicolson)型隐式有限差分格式以及微分的四阶中心差分格式,将两者相结合,得到FPK方程的四阶中心C-N隐式格式差分解,并与FPK方程的精确解进行了比较.数值结果表明,该方法具有良好的稳定性,且可以解决其他方法在概率密度峰值处偏小,而在尾部处较大等缺点.