简介:采用连续介质理论与分子动力学模拟相结合的方法,研究了氧化锌纳米线的振动问题.建立了氧化锌纳米线核壳模型,解释其等效杨氏模量及压电常数的尺寸效应.通过连续介质理论求得氧化锌纳米线振动固有频率,并与分子动力学模拟得到的结果进行对比.研究表明,氧化锌纳米线在极化方向的等效拉伸杨氏模量随着横截面尺寸的增加而逐渐增大,且通过核壳模型分别求得核、壳拉伸杨氏模量.拟合得到的等效拉伸杨氏模量与分子动力学方法获得的等效拉伸杨氏模量符合得很好.根据连续介质理论得到等效弯曲杨氏模量,发现等效弯曲杨氏模量也随着横截面尺寸的增加而增大.氧化锌纳米线极化方向的压电耦合能力比一般压电陶瓷好,压电常数随着横截面尺寸的增加逐渐减小.氧化锌纳米线在不同温度条件下的振动频率没有明显变化,在不同外电场条件下的振动频率有显著变化.分子动力学模拟得到不同横截面尺寸的氧化锌纳米线振动频率不同.根据连续介质理论,求得悬臂Timoshenko梁模型相应尺寸的振动频率,发现横截面的尺寸越大,连续介质理论与分子动力学模拟得到的振动频率越接近.
简介:目前汽车发动机动力总成悬置系统设计的主要任务是选择悬置元件的刚度、位置和角度,使悬置系统自由振动模态频率避开发动机怠速激励力频率与车身自振频率,并尽量提高各模态振型的解耦程度,从而提高悬置系统隔振效果.悬置系统按预定频率严格解耦设计是使设计出的悬置系统模态频率完全等于按汽车设计频率规划预定的频率,并使各模态的振型严格解耦,即各向振动能量的解耦度等于1.本文从悬置系统的自由振动方程出发给出了对悬置系统按预定频率严格解耦设计的方程组,可以利用广义逆矩阵的理论求该方程组的解,亦可通过方程组构造函数进而求出该方程组的解,从而提供比当前的悬置系统模态优化设计更为简便高效的优化设计方法.相应的算例验证了本文提出的按预定频率严格解耦设计方程和求解方法的正确性.
简介:转子系统的不对中问题在旋转机械中非常普遍,是引起严重整机振动的主要原因之一.特别地,以先进涡扇发动机转子系统为代表的带有弹性支承、内外布置的多转子系统,其动力学特性具有特殊性,不对中的理论问题与工程需求十分突出.本文首先针对两类不对中问题(联轴器不对中和支点不对中),评述了目前不对中建模方法、不对中转子系统的动力学和振动特性方面的代表性研究成果.其次,针对航空发动机转子系统,详细综述了目前已有的套齿联轴器、弹性支承组件的动力学研究成果.在此基础上,作者针对其具体结构特征,进行了航空发动机转子系统不对中成因与模式分类,初步建立了联轴器不对中和支点不对中的转子系统动力学模型并进行了振动特性分析.
简介:非线性输出频率响应函数是由Volterra级数发展而来的频域概念,可方便在频域对非线性系统进行分析,它是频率的一维函数.本文主要介绍了利用NARMAX模型以及NOFRF对结构进行损伤检测的方法,并利用实验研究证实了该损伤检测方法的可行性.另外,由于系统非线性特性可用来做结构损伤检测,且具有对系统状态比较敏感的优点,而基于NOFRF的损伤检测方法是利用非线性方法来分析系统的状态,该方法提取出的特征属于非线性特征,所以该损伤检测方法可以用来做结构损伤检测,且具有对系统状态比较敏感的优点.
简介:对旋转粘弹性夹层梁的非线性自由振动特性进行了分析.基于Kelvin—Voigt粘弹性本构关系和大挠度理论,建立了旋转粘弹性夹层梁的非线性自由振动方程,并使用Galerkin法将偏微分形式振动方程化为常微分振动方程.采用多重尺度法对非线性常微分振动方程进行求解,通过小参数同次幂系数相等获得微分方程组,并通过求解方程组及消除久期项来获得旋转粘弹性夹层梁非线性自由振动的一次近似解.用数值方法讨论了粘弹性夹层厚度、转速和轮毂半径对梁固有频率的影响.结果表明:固有频率随转速增大而增大,随夹层厚度增大而减小,随轮毂半径的增大而增大.