简介:本文阐述了基于形变模型(DeformableModels)的LevelSet分割方法的基本原理及其特点,介绍了在图像域的实现方法,实现并改进了基于该模型的NarrowBand快速算法.该算法的基本流程是:先在需要分割的目标内或外给定一封闭的初始曲线,通过Gaussian滤波后计算图像的梯度,最后通过NarrowBand算法完成轮廓线的抽取.该算法应用于医学CT/MRI影像以及显微图像的目标分割中,取得了较好的实验结果,证明该方法非常适合于对具有分支、突触以及拓扑结构变化的目标进行快速精确分割.文中给出了算法实现的基本流程、相关参数的选取准则和部分实验结果.实验发现算法中涉及的参数对提取的轮廓线的精确和光滑程度有较大影响.
简介:摘要:通 过将现有 GrabCut算法的手动初始化导致的图像分割效率低与目标轮廓增强技术相结合,提出了自动 GrabCut算法。首先,对图像执行光谱残差计算,以获得具有目标轮廓的可视化挤压图。其次,对挤出的地图进行预分割,并通过快速连接区域分析执行前景估计,以获取遮罩,并用获取的遮罩替换手动交互式初始化。 GrabCut算法最终实现了自动拆分。根据实验结果,该方法克服了手工操作的缺点,在处理背景色相似的图像时,具有比传统方法更好的分割效果。
简介:针对MSATR图像分割问题,给出了一种基于高阶灰度矩的处理算法.首先深入分析了MSTAR图像的统计分布特性,并对目标、阴影,以及背景区域分别建立了相应的描述模型,在此基础上,构造了高阶灰度矩特征.通过将原始图像变换到高阶灰度矩形式,显著增强了目标区域与阴影、背景区域的差异性,进而依据不同的阈值化策略,实现了MSTAR图像中目标、阴影和背景区域的分割.对MSTAR图像的实验结果表明,与恒虚警率(CFAR)、最大类间方差(OTSU)、模糊C均值(FCM)和马尔可夫随机场(MRF)等常用分割算法相比,本文算法不需进行噪声抑制处理,且在分割效果和鲁棒性等方面性能更好.同时,对多尺度、多目标MSTAR图像的分割也显示出良好的适应性.
简介:摘要:为了准确检测小麦外观品质,首先需要利用图像处理技术对采集的小麦图像进行分割,将小麦与背景分割开,粘连的小麦图像分割为单粒小麦,针对单粒小麦进行理化指标检测,因此图像分割成为小麦品质检测中至关重要的环节。但是在实际稻小麦图像分割时,存在着小麦粒本身不规则,整粒与碎粒混合以及小麦粒大小参差不齐等问题,使得在实际小麦粒图像分割过程中分割困难。本文简要陈述了目前粮食无损检测的重要性,综述了模糊C均值、分水岭算法、凹点匹配等传统图像处理方法,以及CNN、U-Net、Mask R-CNN等深度学习算法在小麦图像分割中的应用与优缺点。通过算法优化,提高了复杂粘连小麦图像的分割精度,推动了小麦品质检测的自动化进程。
简介:将能反映纹理空间尺度变化信息的尺度共生矩阵(动态信息)和反映纹理信息的灰度共生矩阵(静态信息)相结合,进行纹理特征抽取,对纹理图像进行分割,再对分割结果进行滤波,去除分割结果中存在的误分像素,结果表明,能够获得良好的分割效果.