简介:本文采用Lyapunov-Krasovskii泛函方法对一类变时滞细胞神经网络的全局指数稳定性进行了研究,得出了一些关于DCNN全局指数稳定性的充分条件。
简介:本文提出了一类Logistic时滞模型的随机离散形式,并对其进行了研究.首先,讨论了相对应的确定性离散模型的稳定解.其次,在一些简单的条件下,证明了随机离散Logistic方程的渐近稳定性.最后,利用数值仿真说明了主要结果.
简介:本文利用Schur—Cohn—Jury引理及分岔理论讨论了一类捕食与被捕食系统的动力学性质,分析了其正平衡点的稳定性,并讨论了Neimark—Sacker分岔稳定性与方向。通过数值模拟验证了所得结果的正确性。
简介:对一类三阶非线性系统构造出了较好的Lyapunov函数,得到其零解全局渐近稳定的充分性准则,而且去掉了一般要求Lyapunov函数具有无穷大这个较强的条件,只要求系统正半轨线有界,所得结果包含并改进了旧有的结果.
简介:设X是实Banach空间,H:X→X是Lipschitz算子,T:X→X是一致连续的且值域有界,H+T是强增生的,则Mann和Ishikawa迭代程序几乎稳定地强收敛到方程Hx+Tx=f的唯一解.